論文の概要: Pathway to a fully data-driven geotechnics: lessons from materials
informatics
- arxiv url: http://arxiv.org/abs/2312.00581v1
- Date: Fri, 1 Dec 2023 13:45:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-04 14:30:46.641074
- Title: Pathway to a fully data-driven geotechnics: lessons from materials
informatics
- Title(参考訳): データ駆動型地球工学への道-材料情報学からの教訓
- Authors: Stephen Wu, Yu Otake, Yosuke Higo, Ikumasa Yoshida
- Abstract要約: 本稿では,データ駆動手法をジオテクニクスに統合する上での課題と機会について述べる。
深層学習の変換力を活用することで、より協調的で革新的な地学分野へのパラダイムシフトを構想する。
- 参考スコア(独自算出の注目度): 1.2172320168050468
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper elucidates the challenges and opportunities inherent in
integrating data-driven methodologies into geotechnics, drawing inspiration
from the success of materials informatics. Highlighting the intricacies of soil
complexity, heterogeneity, and the lack of comprehensive data, the discussion
underscores the pressing need for community-driven database initiatives and
open science movements. By leveraging the transformative power of deep
learning, particularly in feature extraction from high-dimensional data and the
potential of transfer learning, we envision a paradigm shift towards a more
collaborative and innovative geotechnics field. The paper concludes with a
forward-looking stance, emphasizing the revolutionary potential brought about
by advanced computational tools like large language models in reshaping
geotechnics informatics.
- Abstract(参考訳): 本稿では,データ駆動手法をジオテクニクスに統合する際の課題と機会を解明し,材料情報学の成功からインスピレーションを得た。
土壌の複雑さ、多様性、包括的なデータの欠如の複雑さを強調する議論は、コミュニティ主導のデータベースイニシアチブとオープンサイエンスの動きの必要性の高まりを強調するものだ。
深層学習の変形力、特に高次元データからの特徴抽出と転送学習の可能性を活用することで、より協力的で革新的なジオテクニクス分野へのパラダイムシフトを想定する。
論文は、大きな言語モデルのような高度な計算ツールによってもたらされる、ジオテクニクスのインフォマティクスを再構築する革命的な可能性を強調しながら、前進的なスタンスで締めくくっている。
関連論文リスト
- Self-supervised Learning for Geospatial AI: A Survey [21.504978593542354]
自己教師付き学習(SSL)は地理空間データに採用されていることで注目を集めている。
本稿では,地理空間ベクトルデータで広く用いられている3種類の一次データ(幾何学)に対して,SSL技術の適用および開発に関する包括的かつ最新の調査を行う。
論文 参考訳(メタデータ) (2024-08-22T05:28:22Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
本研究では,実世界のパターンを持つ多様な合成シーンを生成可能なベイズネットワークを提案する。
一連の実験は、既存の最先端の事前学習手法に比べて、我々の手法が一貫した優位性を示す。
論文 参考訳(メタデータ) (2024-06-17T07:43:53Z) - Cross-view geo-localization: a survey [1.3686993145787065]
クロスビューなジオローカライゼーションは、コンピュータビジョンの領域で注目を浴びている。
本稿では,この領域に不可欠な最先端の方法論,技法,および関連する課題について,徹底的な調査を行う。
論文 参考訳(メタデータ) (2024-06-14T05:14:54Z) - Data Science for Geographic Information Systems [0.0]
データサイエンスを地理情報システムに統合することで、これらのツールの完全な空間分析プラットフォームへの進化が促進された。
機械学習とビッグデータ技術の採用により、これらのプラットフォームはますます複雑なデータを扱う能力を備えてきた。
この研究は、研究分野としてのデータサイエンスとGISの歴史的・技術的進化を辿り、ドメイン間の収束の要点を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-04-04T18:50:58Z) - Deep Learning for Trajectory Data Management and Mining: A Survey and Beyond [58.63558696061679]
軌道計算は、位置サービス、都市交通、公共安全など、様々な実用用途において重要である。
トラジェクトリ・コンピューティングのためのディープラーニング(DL4Traj)の開発と最近の進歩について概観する。
特に、軌道計算を増強する可能性を持つ大規模言語モデル(LLM)の最近の進歩をカプセル化する。
論文 参考訳(メタデータ) (2024-03-21T05:57:27Z) - When Geoscience Meets Foundation Models: Towards General Geoscience Artificial Intelligence System [6.445323648941926]
地球科学基礎モデル(Geoscience foundation model, GFMs)は、地球系の力学のシミュレーションと理解を強化するために、広範な学際データを統合するパラダイムシフトソリューションである。
GFMのユニークな長所は、フレキシブルなタスク仕様、多様な入出力能力、マルチモーダルな知識表現である。
このレビューは、先進的なAI技術と地球科学の交差点における未解決の機会を強調した、新興の地球科学研究パラダイムの包括的概要を提供する。
論文 参考訳(メタデータ) (2023-09-13T08:44:09Z) - Iterative Zero-Shot LLM Prompting for Knowledge Graph Construction [104.29108668347727]
本稿では,最新の生成型大規模言語モデルの可能性を活用する,革新的な知識グラフ生成手法を提案する。
このアプローチは、新しい反復的なゼロショットと外部知識に依存しない戦略を含むパイプラインで伝達される。
我々は、我々の提案がスケーラブルで多目的な知識グラフ構築に適したソリューションであり、異なる新しい文脈に適用できると主張している。
論文 参考訳(メタデータ) (2023-07-03T16:01:45Z) - Self-Supervised Representation Learning: Introduction, Advances and
Challenges [125.38214493654534]
自己教師付き表現学習手法は、大きな注釈付きデータセットを必要とせずに強力な機能学習を提供することを目的としている。
本稿では、この活気ある領域について、鍵となる概念、アプローチの4つの主要なファミリーと関連する技術の状態、そして、データの多様性に自己監督手法を適用する方法について紹介する。
論文 参考訳(メタデータ) (2021-10-18T13:51:22Z) - Synthetic Data: Opening the data floodgates to enable faster, more
directed development of machine learning methods [96.92041573661407]
機械学習における画期的な進歩の多くは、大量のリッチデータを利用できることに起因する。
多くの大規模データセットは、医療データなど高度に敏感であり、機械学習コミュニティでは広く利用できない。
プライバシー保証で合成データを生成することは、そのようなソリューションを提供します。
論文 参考訳(メタデータ) (2020-12-08T17:26:10Z) - Data-driven geophysics: from dictionary learning to deep learning [3.6713387874278247]
物理の「モデル駆動」アプローチは次元の呪いに悩まされ、地下を不正確にモデル化する可能性がある。
データ駆動型」技術は、地球物理データの増加によってこれらの問題を克服する可能性がある。
論文 参考訳(メタデータ) (2020-07-13T04:39:49Z) - A Survey on Deep Learning for Localization and Mapping: Towards the Age
of Spatial Machine Intelligence [48.67755344239951]
包括的調査を行い、深層学習を用いた局所化とマッピングのための新しい分類法を提案する。
オードメトリ推定、マッピング、グローバルローカライゼーション、同時ローカライゼーション、マッピングなど、幅広いトピックがカバーされている。
この研究がロボティクス、コンピュータビジョン、機械学習コミュニティの新たな成果を結び付けることを願っている。
論文 参考訳(メタデータ) (2020-06-22T19:01:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。