Generation of Robust Entanglement in Plasmonically Coupled Quantum Dots
Driven by Quantum Squeezed Light
- URL: http://arxiv.org/abs/2312.00608v1
- Date: Fri, 1 Dec 2023 14:14:38 GMT
- Title: Generation of Robust Entanglement in Plasmonically Coupled Quantum Dots
Driven by Quantum Squeezed Light
- Authors: Sina Soleimanikahnoj, Stephen K. Gray and Norbert F. Scherer
- Abstract summary: We show that strong coupling of plasmons to the incoming light source and the pairwise nature of squeezed photon generation enable the formation of entanglement.
The entanglement of quantum dots, measured as concurrence, can be improved replacing a pulsed source of light to continuous pumping of squeezed photons.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Our cavity quantum electrodynamics calculations demonstrate generation of
steady-state entanglement between a plasmonically coupled pair of quantum dots
by using single-mode squeezed light source. We show that strong coupling of
plasmons to the incoming light source and the pairwise nature of squeezed
photon generation enable the formation of entanglement between the initially
unexcited quantum dots. The entanglement of quantum dots, measured as
concurrence, can be improved replacing a pulsed source of light to continuous
pumping of squeezed photons. Unlike previously introduced schemes the
concurrence is robust against variations in the system parameters.
Specifically, the generation of entanglement does not rely on fine tuning of
plasmon quantum dot coupling. This work provides a new perspective for robust
entangled state preparation in open quantum systems.
Related papers
- Many-Body Photon Blockade and Quantum Light Generation from Cavity Quantum Materials [0.0]
We show that photons bear witness to cavity quantum-electrodynamical modifications of the material.
We show that materials near a quantum critical point can realize a collective many-body photon blockade.
Our findings provide new routes for interrogating and harnessing cavity-embedded quantum materials as quantum light sources.
arXiv Detail & Related papers (2024-11-13T19:00:25Z) - Beyond-adiabatic Quantum Admittance of a Semiconductor Quantum Dot at High Frequencies: Rethinking Reflectometry as Polaron Dynamics [0.0]
We develop a self-consistent quantum master equation formalism to obtain the admittance of a quantum dot tunnel-coupled to a charge reservoir.
We describe two new photon-mediated regimes: Floquet broadening, determined by the dressing of the QD states, and broadening determined by photon loss in the system.
arXiv Detail & Related papers (2023-07-31T14:46:43Z) - A source of entangled photons based on a cavity-enhanced and strain-tuned GaAs quantum dot [0.03829341169189996]
We develop a novel device consisting of a quantum dot embedded in a circular Bragg resonator, in turn, integrated onto a micromachined piezoelectric actuator.
The resonator engineers the light-matter interaction to empower extraction efficiencies up to 0.69(4).
The actuator manipulates strain fields that tune the quantum dot for the generation of entangled photons with corrected fidelities to a maximally entangled state up to 0.96(1).
arXiv Detail & Related papers (2022-12-23T18:06:32Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Quantum single-photon control, storage, and entanglement generation with
planar atomic arrays [0.0]
We show how to achieve quantum control of an incident single-photon pulse by engineering a two-dimensional atomic array.
Control is achieved by controlling classically or quantum mechanically the ac Stark shifts of the atomic levels.
We illustrate the control by manipulating the phase, phase superposition, polarization, and direction of a transmitted or reflected photon.
arXiv Detail & Related papers (2021-08-09T10:23:33Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Single photon randomness originating from the symmetry of dipole
emission and the unpredictability of spontaneous emission [55.41644538483948]
Quantum random number generation is a key ingredient for quantum cryptography and fundamental quantum optics.
We experimentally demonstrate quantum random number generation based on the spontaneous emission process.
The scheme can be extended to random number generation by coherent single photons with potential applications in solid-state based quantum communication at room temperature.
arXiv Detail & Related papers (2021-02-18T14:07:20Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Boosting entanglement generation in down-conversion with incoherent
illumination [0.0]
Entangled photons produced by spontaneous parametric down-conversion have been of paramount importance for our current understanding of quantum mechanics and advances in quantum information.
We show that when a novel class of partially coherent Gaussian pump beams is considered, a distinct type of quantum state can be generated for which the amount of entanglement increases inversely with the degree of coherence of the pump beam.
This leads to highly incoherent yet highly entangled multi-photon states, which should have interesting consequences for photonic quantum information science.
arXiv Detail & Related papers (2020-06-25T15:28:34Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.