Quantum single-photon control, storage, and entanglement generation with
planar atomic arrays
- URL: http://arxiv.org/abs/2108.03923v3
- Date: Thu, 9 Dec 2021 12:49:06 GMT
- Title: Quantum single-photon control, storage, and entanglement generation with
planar atomic arrays
- Authors: K. E. Ballantine, J. Ruostekoski
- Abstract summary: We show how to achieve quantum control of an incident single-photon pulse by engineering a two-dimensional atomic array.
Control is achieved by controlling classically or quantum mechanically the ac Stark shifts of the atomic levels.
We illustrate the control by manipulating the phase, phase superposition, polarization, and direction of a transmitted or reflected photon.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While artificially fabricated patterned metasurfaces are providing
paradigm-shifting optical components for classical light manipulation, strongly
interacting, controllable, and deterministic quantum interfaces between light
and matter in free space remain an outstanding challenge. Here we theoretically
demonstrate how to achieve quantum control of both the electric and magnetic
components of an incident single-photon pulse by engineering the collective
response of a two-dimensional atomic array. High-fidelity absorption and
storage in a long-lived subradiant state, and its subsequent retrieval, are
achieved by controlling classically or quantum mechanically the ac Stark shifts
of the atomic levels and suppressing the scattering during the absorption.
Quantum wavefront control of the transmitted photon with nearly zero reflection
is prepared by coupling the collective state of the array to another photon in
a cavity and by engineering a Huygens' surface of atoms using only a single
coherent standing wave. The proposed schemes allow for the generation of
entanglement between the cavity, the lattice, and hence the state of the
stored, reflected or transmitted light, and for quantum-state transfer between
the cavity and propagating photons. Bipartite entanglement generation is
explicitly calculated between a stored single-photon excitation of the array
and the cavity photon. We illustrate the control by manipulating the phase,
phase superposition, polarization, and direction of a transmitted or reflected
photon, providing quantum-optical switches and functional quantum interfaces
between light and atoms that could form links in a larger quantum information
platform.
Related papers
- Continuous wave quantum light control via engineered Rydberg induced
dephasing [17.857341127079305]
We analyze several variations of a single-photon optical switch operating in the continuous wave regime.
The devices are based on ensembles of Rydberg atoms that interact through van der Waals interaction.
arXiv Detail & Related papers (2023-09-19T18:39:24Z) - Tunable phononic coupling in excitonic quantum emitters [6.510363316842893]
We report the deterministic creation of quantum emitters featuring highly tunable coupling between excitons and phonons.
The quantum emitters are formed in strain-induced quantum dots created in homobilayer semiconductor WSe2.
arXiv Detail & Related papers (2023-02-27T02:47:56Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Coherent super- and subradiant dynamics between distant optical quantum
emitters [5.240984067778683]
Single emitter radiation can be tailored by the photonic environment.
Multiple emitters fundamentally extends this picture following a "more is different" dictum.
Subradiant states are particularly challenging to realize being highly sensitive to imperfections and decoherence.
arXiv Detail & Related papers (2022-10-05T17:59:06Z) - A subwavelength atomic array switched by a single Rydberg atom [0.0]
Enhancing light-matter coupling at the level of single quanta is essential for numerous applications in quantum science.
Cooperative optical response of subwavelength atomic arrays has been found to open new pathways for such strong light-matter couplings.
We demonstrate spatial control over the optical response of an atomically thin mirror formed by a subwavelength array of atoms in free space.
arXiv Detail & Related papers (2022-07-19T16:27:44Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Quantum interface between light and a one-dimensional atomic system [58.720142291102135]
We investigate optimal conditions for the quantum interface between a signal photon pulse and one-dimensional chain consisting of a varied number of atoms.
The efficiency of interaction is mainly limited by achieved overlap and coupling of the waveguide evanescent field with the trapped atoms.
arXiv Detail & Related papers (2020-04-11T11:43:54Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.