Probing Off-diagonal Eigenstate Thermalization with Tensor Networks
- URL: http://arxiv.org/abs/2312.00736v3
- Date: Tue, 2 Apr 2024 09:53:49 GMT
- Title: Probing Off-diagonal Eigenstate Thermalization with Tensor Networks
- Authors: Maxine Luo, Rahul Trivedi, Mari Carmen BaƱuls, J. Ignacio Cirac,
- Abstract summary: Energy filter methods in combination with quantum simulation can efficiently access the properties of quantum many-body systems.
We extend this strategy to explore the properties of off-diagonal matrix elements of observables in the energy eigenbasis.
We test the method on integrable and non-integrable spin chains of up to 60 sites, much larger than accessible with exact diagonalization.
- Score: 0.29998889086656577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Energy filter methods in combination with quantum simulation can efficiently access the properties of quantum many-body systems at finite energy densities [Lu et al. PRX Quantum 2, 020321 (2021)]. Classically simulating this algorithm with tensor networks can be used to investigate the microcanonical properties of large spin chains, as recently shown in [Yang et al. Phys. Rev. B 106, 024307 (2022)]. Here we extend this strategy to explore the properties of off-diagonal matrix elements of observables in the energy eigenbasis, fundamentally connected to the thermalization behavior and the eigenstate thermalization hypothesis. We test the method on integrable and non-integrable spin chains of up to 60 sites, much larger than accessible with exact diagonalization. Our results allow us to explore the scaling of the off-diagonal functions with the size and energy difference, and to establish quantitative differences between integrable and non-integrable cases.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - A quantum eigenvalue solver based on tensor networks [0.0]
Electronic ground states are of central importance in chemical simulations, but have remained beyond the reach of efficient classical algorithms.
We introduce a hybrid quantum-classical eigenvalue solver that constructs a wavefunction ansatz from a linear combination of matrix product states in rotated orbital bases.
This study suggests a promising new avenue for scaling up simulations of strongly correlated chemical systems on near-term quantum hardware.
arXiv Detail & Related papers (2024-04-16T02:04:47Z) - Neutron-nucleus dynamics simulations for quantum computers [49.369935809497214]
We develop a novel quantum algorithm for neutron-nucleus simulations with general potentials.
It provides acceptable bound-state energies even in the presence of noise, through the noise-resilient training method.
We introduce a new commutativity scheme called distance-grouped commutativity (DGC) and compare its performance with the well-known qubit-commutativity scheme.
arXiv Detail & Related papers (2024-02-22T16:33:48Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Determination of the critical exponents in dissipative phase
transitions: Coherent anomaly approach [51.819912248960804]
We propose a generalization of the coherent anomaly method to extract the critical exponents of a phase transition occurring in the steady-state of an open quantum many-body system.
arXiv Detail & Related papers (2021-03-12T13:16:18Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Approximating the long time average of the density operator: Diagonal
ensemble [0.7734726150561088]
We present a method to approximate the diagonal ensemble using tensor networks.
We analyze the performance of the method on a non-integrable spin chain.
arXiv Detail & Related papers (2020-11-02T19:02:04Z) - Recovering quantum correlations in optical lattices from interaction
quenches [0.0]
Quantum simulations with ultra-cold atoms in optical lattices open up an exciting path towards understanding strongly interacting quantum systems.
Currently a direct measurement of local coherent currents is out of reach.
We show how to achieve that by measuring densities that are altered in response to quenches to non-interacting dynamics.
arXiv Detail & Related papers (2020-05-18T18:03:33Z) - Eigenstate Thermalization in a Locally Perturbed Integrable System [0.0]
Eigenstate thermalization is widely accepted as the mechanism behind thermalization in isolated quantum systems.
We show that locally perturbing an integrable system can give rise to eigenstate thermalization.
arXiv Detail & Related papers (2020-04-09T18:01:01Z) - Efficient variational contraction of two-dimensional tensor networks
with a non-trivial unit cell [0.0]
tensor network states provide an efficient class of states that faithfully capture strongly correlated quantum models and systems.
We generalize a recently proposed variational uniform matrix product state algorithm for capturing one-dimensional quantum lattices.
A key property of the algorithm is a computational effort that scales linearly rather than exponentially in the size of the unit cell.
arXiv Detail & Related papers (2020-03-02T19:01:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.