論文の概要: Three-Wave Mixing Quantum-Limited Kinetic Inductance Parametric
Amplifier operating at 6 Tesla and near 1 Kelvin
- arxiv url: http://arxiv.org/abs/2312.00748v1
- Date: Fri, 1 Dec 2023 17:37:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-04 13:49:12.173328
- Title: Three-Wave Mixing Quantum-Limited Kinetic Inductance Parametric
Amplifier operating at 6 Tesla and near 1 Kelvin
- Title(参考訳): 6テスラおよびケルビン近傍で動作する3波混合量子制限動インダクタンスパラメトリック増幅器
- Authors: Simone Frasca, Camille Roy, Guillaume Beaulieu, Pasquale Scarlino
- Abstract要約: NbN超伝導薄膜を用いたキネティックインダクタンスパラメトリック増幅器の試作と特性評価を行った。
KIPAは、伝統的なジョセフソン型パラメトリック増幅器のいくつかの制限に対処している。
量子制限増幅(>20dB)は20MHzのゲインバンド幅の製品で、最大6テスラのフィールドで動作し、温度は850mKである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parametric amplifiers play a crucial role in modern quantum technology by
enabling the enhancement of weak signals with minimal added noise.
Traditionally, Josephson junctions have been the primary choice for
constructing parametric amplifiers. Nevertheless, high-kinetic inductance thin
films have emerged as viable alternatives to engineer the necessary
nonlinearity. In this work, we introduce and characterize a Kinetic Inductance
Parametric Amplifier (KIPA) built using high-quality NbN superconducting thin
films. The KIPA addresses some of the limitations of traditional
Josephson-based parametric amplifiers, excelling in dynamic range, operational
temperature, and magnetic field resilience. We demonstrate a quantum-limited
amplification (> 20 dB) with a 20 MHz gain-bandwidth product, operational at
fields up to 6 Tesla and temperatures as high as 850 mK. Harnessing kinetic
inductance in NbN thin films, the KIPA emerges as a robust solution for quantum
signal amplification, enhancing research possibilities in quantum information
processing and low-temperature quantum experiments. Its magnetic field
compatibility and quantum-limited performance at high temperatures make it an
invaluable tool, promising new advancements in quantum research.
- Abstract(参考訳): パラメトリック増幅器は、最小付加雑音で弱い信号の増強を可能にすることで、現代の量子技術において重要な役割を果たす。
伝統的に、ジョセフソン接合はパラメトリック増幅器を構成する主要な選択肢である。
それにもかかわらず、高速度インダクタンス薄膜は、必要な非線形性を設計するための有効な代替品として出現している。
本研究では,高品位NbN超伝導薄膜を用いたキネティックインダクタンスパラメトリック増幅器(KIPA)の導入と特性評価を行う。
KIPAは従来のジョセフソン型パラメトリック増幅器のいくつかの制限に対処し、ダイナミックレンジ、運転温度、磁気抵抗性に優れていた。
量子制限増幅(>20dB)は20MHzのゲインバンド幅の製品で、最大6テスラのフィールドで動作し、温度は850mKである。
NbN薄膜の運動インダクタンスを損なうため、KIPAは量子信号増幅のための堅牢な解として登場し、量子情報処理や低温量子実験の研究可能性を高める。
磁場の互換性と高温での量子限界性能は、量子研究の新しい進歩を約束する貴重な道具である。
関連論文リスト
- Band engineering and study of disorder using topology in compact high kinetic inductance cavity arrays [0.0]
超伝導マイクロ波メタマテリアルは、量子光学と情報科学に大きな可能性を秘めている。
回路量子電気力学の文脈では、そのようなメタマテリアルは結合キャビティアレイ(CCAs)として実装できる。
高温超伝導NbN薄膜を利用した小型CCAアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-03-26T23:19:51Z) - Selective Single and Double-Mode Quantum Limited Amplifier [0.0]
量子制限増幅器は、量子力学の原理によって予測される最小限のノイズを導入しながら、弱い信号の増幅を可能にする。
これらの増幅器は、超伝導量子ビットとスピンの高速かつ正確な読み出しを含む、量子コンピューティングにおける幅広い応用を提供している。
超伝導インダクタンスに基づく新しい量子制限増幅器を実験的に開発する。
論文 参考訳(メタデータ) (2023-11-20T02:37:58Z) - Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
超伝導量子ビットに基づくデバイスは、量子非劣化測定(QND)による数GHz単一光子の検出に成功している。
本研究では,Qub-ITの超伝導量子ビットデバイスの実現に向けた状況を示す。
論文 参考訳(メタデータ) (2023-10-08T17:11:42Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
マイクロ波または高周波駆動は、量子センサーの小型化、エネルギー効率、非侵襲性を著しく制限する。
我々は、コヒーレント量子センシングに対する純粋に光学的アプローチを示すことによって、この制限を克服する。
この結果から, 磁気学やジャイロスコープの応用において, 量子センサの小型化が期待できる。
論文 参考訳(メタデータ) (2022-12-14T08:34:11Z) - Magnetic field-resilient quantum-limited parametric amplifier [0.0]
ジョセフソン接合の代わりにNbNナノブリッジは、42dBまでの強いパラメトリックゲインに対して望ましい非線形性を提供する。
実験で利用できる最大磁場である427 mTまでの面内磁場でノイズが保存される。
論文 参考訳(メタデータ) (2022-09-27T19:37:51Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
QUB-ITプロジェクトの目標は、量子非破壊(QND)測定と絡み合った量子ビットを利用した、反復的な単一光子カウンタを実現することである。
本稿では,Qiskit-Metalを用いた共振器に結合したトランスモン量子ビットからなる第1の超伝導デバイスの設計とシミュレーションを行う。
論文 参考訳(メタデータ) (2022-07-18T07:05:10Z) - A gate-tunable graphene Josephson parametric amplifier [0.31458406135473804]
超伝導量子回路は、マイクロ波量子光学の劇的な進歩に寄与している。
量子ビットのような超伝導パラメトリック増幅器は、一般的にジョセフソン接合を磁気的に調整可能で散逸のない非線形性の源として利用する。
ここではグラフェンジョセフソン接合を利用したパラメトリック増幅器を示し、その動作周波数がゲート電圧で広く調整可能であることを示す。
論文 参考訳(メタデータ) (2022-04-05T13:00:40Z) - Quantum Dot-Based Parametric Amplifiers [0.0]
量子制限ノイズ性能に近づいたジョセフソンパラメトリック増幅器(JPAs)は超伝導量子ビットの高忠実な読み出しを可能にし、最近では半導体量子ドット(QD)も実現している。
電子2レベル系における量子容量は、パラメトリック増幅のための代替の散逸のない非線形素子を提供することができる。
1.8GHz超伝導ランプ素子マイクロ波空洞に埋没したCMOSナノワイヤスプリットゲートトランジスタにおけるQD-Reservoir電子遷移を用いた位相感度パラメトリック増幅実験を行った。
論文 参考訳(メタデータ) (2021-11-23T12:40:47Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
超伝導量子回路は、主要な量子コンピューティングプラットフォームの一つである。
超伝導量子コンピューティングを実用上重要な点に進めるためには、デコヒーレンスに繋がる物質不完全性を特定し、対処することが重要である。
ここでは、テラヘルツ走査近接場光学顕微鏡を用いて、シリコン上の湿式エッチングアルミニウム共振器の局所誘電特性とキャリア濃度を調査する。
論文 参考訳(メタデータ) (2021-06-24T11:06:34Z) - Quantum Sensors for Microscopic Tunneling Systems [58.720142291102135]
トンネル2層系(TLS)は超伝導量子ビットなどのマイクロファブリック量子デバイスにおいて重要である。
本稿では,薄膜として堆積した任意の材料に個々のTLSを特徴付ける手法を提案する。
提案手法は, トンネル欠陥の構造を解明するために, 量子材料分光の道を開く。
論文 参考訳(メタデータ) (2020-11-29T09:57:50Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
表面音響波(SAW)は、圧電材料内で動く量子ドットを生成することができる。
動的量子ドット上の電子スピン量子ビットがどのように絡み合うかを示す。
論文 参考訳(メタデータ) (2020-01-15T19:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。