Three-Wave Mixing Quantum-Limited Kinetic Inductance Parametric
Amplifier operating at 6 Tesla and near 1 Kelvin
- URL: http://arxiv.org/abs/2312.00748v1
- Date: Fri, 1 Dec 2023 17:37:06 GMT
- Title: Three-Wave Mixing Quantum-Limited Kinetic Inductance Parametric
Amplifier operating at 6 Tesla and near 1 Kelvin
- Authors: Simone Frasca, Camille Roy, Guillaume Beaulieu, Pasquale Scarlino
- Abstract summary: We introduce and characterize a Kinetic Inductance Parametric Amplifier built using high-quality NbN superconducting thin films.
The KIPA addresses some of the limitations of traditional Josephson-based parametric amplifiers.
We demonstrate a quantum-limited amplification (> 20 dB) with a 20 MHz gain-bandwidth product, operational at fields up to 6 Tesla and temperatures as high as 850 mK.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parametric amplifiers play a crucial role in modern quantum technology by
enabling the enhancement of weak signals with minimal added noise.
Traditionally, Josephson junctions have been the primary choice for
constructing parametric amplifiers. Nevertheless, high-kinetic inductance thin
films have emerged as viable alternatives to engineer the necessary
nonlinearity. In this work, we introduce and characterize a Kinetic Inductance
Parametric Amplifier (KIPA) built using high-quality NbN superconducting thin
films. The KIPA addresses some of the limitations of traditional
Josephson-based parametric amplifiers, excelling in dynamic range, operational
temperature, and magnetic field resilience. We demonstrate a quantum-limited
amplification (> 20 dB) with a 20 MHz gain-bandwidth product, operational at
fields up to 6 Tesla and temperatures as high as 850 mK. Harnessing kinetic
inductance in NbN thin films, the KIPA emerges as a robust solution for quantum
signal amplification, enhancing research possibilities in quantum information
processing and low-temperature quantum experiments. Its magnetic field
compatibility and quantum-limited performance at high temperatures make it an
invaluable tool, promising new advancements in quantum research.
Related papers
- Band engineering and study of disorder using topology in compact high kinetic inductance cavity arrays [0.0]
Superconducting microwave metamaterials offer enormous potential for quantum optics and information science.
In the context of circuit quantum electrodynamics, such metamaterials can be implemented as coupled cavity arrays (CCAs)
We present a compact CCA architecture leveraging superconducting NbN thin films presenting high kinetic inductance.
arXiv Detail & Related papers (2024-03-26T23:19:51Z) - Selective Single and Double-Mode Quantum Limited Amplifier [0.0]
A quantum-limited amplifier enables the amplification of weak signals while introducing minimal noise dictated by the principles of quantum mechanics.
These amplifiers serve a broad spectrum of applications in quantum computing, including fast and accurate readout of superconducting qubits and spins.
We experimentally develop a novel quantum-limited amplifier based on superconducting kinetic inductance.
arXiv Detail & Related papers (2023-11-20T02:37:58Z) - Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Magnetic field-resilient quantum-limited parametric amplifier [0.0]
NbN nanobridge instead of Josephson Junctions provides desired nonlinearity for a strong parametric gain up to 42 dB.
Noise is preserved in an in-plane magnetic field up to 427 mT, the maximum field available in our experiment.
arXiv Detail & Related papers (2022-09-27T19:37:51Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - A gate-tunable graphene Josephson parametric amplifier [0.31458406135473804]
Superconducting quantum circuits have contributed to dramatic advances in microwave quantum optics.
Superconducting parametric amplifiers, like quantum bits, typically utilize a Josephson junction as a source of magnetically tunable and dissipation-free nonlinearity.
Here we demonstrate a parametric amplifier leveraging a graphene Josephson junction and show that its working frequency is widely tunable with a gate voltage.
arXiv Detail & Related papers (2022-04-05T13:00:40Z) - Quantum Dot-Based Parametric Amplifiers [0.0]
Josephson parametric amplifiers (JPAs) approaching quantum-limited noise performance have been instrumental in enabling high fidelity readout of superconducting qubits and, recently, semiconductor quantum dots (QDs)
We propose that the quantum capacitance arising in electronic two-level systems can provide an alternative dissipation-less non-linear element for parametric amplification.
We experimentally demonstrate phase-sensitive parametric amplification using a QD-reservoir electron transition in a CMOS nanowire split-gate transistor embedded in a 1.8GHz superconducting lumped-element microwave cavity.
arXiv Detail & Related papers (2021-11-23T12:40:47Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - Quantum Sensors for Microscopic Tunneling Systems [58.720142291102135]
tunneling Two-Level-Systems (TLS) are important for micro-fabricated quantum devices such as superconducting qubits.
We present a method to characterize individual TLS in virtually arbitrary materials deposited as thin-films.
Our approach opens avenues for quantum material spectroscopy to investigate the structure of tunneling defects.
arXiv Detail & Related papers (2020-11-29T09:57:50Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.