Heteroscedastic Uncertainty Estimation Framework for Unsupervised Registration
- URL: http://arxiv.org/abs/2312.00836v2
- Date: Thu, 18 Jul 2024 02:32:25 GMT
- Title: Heteroscedastic Uncertainty Estimation Framework for Unsupervised Registration
- Authors: Xiaoran Zhang, Daniel H. Pak, Shawn S. Ahn, Xiaoxiao Li, Chenyu You, Lawrence H. Staib, Albert J. Sinusas, Alex Wong, James S. Duncan,
- Abstract summary: We propose a framework for heteroscedastic image uncertainty estimation.
It can adaptively reduce the influence of regions with high uncertainty during unsupervised registration.
Our method consistently outperforms baselines and produces sensible uncertainty estimates.
- Score: 32.081258147692395
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning methods for unsupervised registration often rely on objectives that assume a uniform noise level across the spatial domain (e.g. mean-squared error loss), but noise distributions are often heteroscedastic and input-dependent in real-world medical images. Thus, this assumption often leads to degradation in registration performance, mainly due to the undesired influence of noise-induced outliers. To mitigate this, we propose a framework for heteroscedastic image uncertainty estimation that can adaptively reduce the influence of regions with high uncertainty during unsupervised registration. The framework consists of a collaborative training strategy for the displacement and variance estimators, and a novel image fidelity weighting scheme utilizing signal-to-noise ratios. Our approach prevents the model from being driven away by spurious gradients caused by the simplified homoscedastic assumption, leading to more accurate displacement estimation. To illustrate its versatility and effectiveness, we tested our framework on two representative registration architectures across three medical image datasets. Our method consistently outperforms baselines and produces sensible uncertainty estimates. The code is publicly available at \url{https://voldemort108x.github.io/hetero_uncertainty/}.
Related papers
- Hierarchical uncertainty estimation for learning-based registration in neuroimaging [10.964653898591413]
We propose a principled way to propagate uncertainties (epistemic or aleatoric) estimated at the level of spatial location.
Experiments show that uncertainty-aware fitting of transformations improves the registration accuracy of brain MRI scans.
arXiv Detail & Related papers (2024-10-11T23:12:16Z) - Denoising as Adaptation: Noise-Space Domain Adaptation for Image Restoration [64.84134880709625]
We show that it is possible to perform domain adaptation via the noise space using diffusion models.
In particular, by leveraging the unique property of how auxiliary conditional inputs influence the multi-step denoising process, we derive a meaningful diffusion loss.
We present crucial strategies such as channel-shuffling layer and residual-swapping contrastive learning in the diffusion model.
arXiv Detail & Related papers (2024-06-26T17:40:30Z) - Stable Neighbor Denoising for Source-free Domain Adaptive Segmentation [91.83820250747935]
Pseudo-label noise is mainly contained in unstable samples in which predictions of most pixels undergo significant variations during self-training.
We introduce the Stable Neighbor Denoising (SND) approach, which effectively discovers highly correlated stable and unstable samples.
SND consistently outperforms state-of-the-art methods in various SFUDA semantic segmentation settings.
arXiv Detail & Related papers (2024-06-10T21:44:52Z) - From Registration Uncertainty to Segmentation Uncertainty [11.294691606431526]
We propose a novel framework to concurrently estimate both the epistemic and aleatoric segmentation uncertainties for image registration.
By introducing segmentation uncertainty along with existing methods for estimating registration uncertainty, we offer vital insights into the potential uncertainties at different stages of image registration.
arXiv Detail & Related papers (2024-03-08T07:16:14Z) - Adaptive Correspondence Scoring for Unsupervised Medical Image Registration [9.294341405888158]
Existing methods rely on image reconstruction as the primary supervision signal.
We propose an adaptive framework that re-weights the error residuals with a correspondence scoring map during training.
Our framework consistently outperforms other methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2023-12-01T01:11:22Z) - Distributional Shift-Aware Off-Policy Interval Estimation: A Unified
Error Quantification Framework [8.572441599469597]
We study high-confidence off-policy evaluation in the context of infinite-horizon Markov decision processes.
The objective is to establish a confidence interval (CI) for the target policy value using only offline data pre-collected from unknown behavior policies.
We show that our algorithm is sample-efficient, error-robust, and provably convergent even in non-linear function approximation settings.
arXiv Detail & Related papers (2023-09-23T06:35:44Z) - Benchmarking common uncertainty estimation methods with
histopathological images under domain shift and label noise [62.997667081978825]
In high-risk environments, deep learning models need to be able to judge their uncertainty and reject inputs when there is a significant chance of misclassification.
We conduct a rigorous evaluation of the most commonly used uncertainty and robustness methods for the classification of Whole Slide Images.
We observe that ensembles of methods generally lead to better uncertainty estimates as well as an increased robustness towards domain shifts and label noise.
arXiv Detail & Related papers (2023-01-03T11:34:36Z) - Deblurring via Stochastic Refinement [85.42730934561101]
We present an alternative framework for blind deblurring based on conditional diffusion models.
Our method is competitive in terms of distortion metrics such as PSNR.
arXiv Detail & Related papers (2021-12-05T04:36:09Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
We estimate and exploit the credibility of the assigned pseudo-label of each sample to alleviate the influence of noisy labels.
Our uncertainty-guided optimization brings significant improvement and achieves the state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2020-12-16T04:09:04Z) - Log-Likelihood Ratio Minimizing Flows: Towards Robust and Quantifiable
Neural Distribution Alignment [52.02794488304448]
We propose a new distribution alignment method based on a log-likelihood ratio statistic and normalizing flows.
We experimentally verify that minimizing the resulting objective results in domain alignment that preserves the local structure of input domains.
arXiv Detail & Related papers (2020-03-26T22:10:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.