Hierarchical uncertainty estimation for learning-based registration in neuroimaging
- URL: http://arxiv.org/abs/2410.09299v1
- Date: Fri, 11 Oct 2024 23:12:16 GMT
- Title: Hierarchical uncertainty estimation for learning-based registration in neuroimaging
- Authors: Xiaoling Hu, Karthik Gopinath, Peirong Liu, Malte Hoffmann, Koen Van Leemput, Oula Puonti, Juan Eugenio Iglesias,
- Abstract summary: We propose a principled way to propagate uncertainties (epistemic or aleatoric) estimated at the level of spatial location.
Experiments show that uncertainty-aware fitting of transformations improves the registration accuracy of brain MRI scans.
- Score: 10.964653898591413
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Over recent years, deep learning based image registration has achieved impressive accuracy in many domains, including medical imaging and, specifically, human neuroimaging with magnetic resonance imaging (MRI). However, the uncertainty estimation associated with these methods has been largely limited to the application of generic techniques (e.g., Monte Carlo dropout) that do not exploit the peculiarities of the problem domain, particularly spatial modeling. Here, we propose a principled way to propagate uncertainties (epistemic or aleatoric) estimated at the level of spatial location by these methods, to the level of global transformation models, and further to downstream tasks. Specifically, we justify the choice of a Gaussian distribution for the local uncertainty modeling, and then propose a framework where uncertainties spread across hierarchical levels, depending on the choice of transformation model. Experiments on publicly available data sets show that Monte Carlo dropout correlates very poorly with the reference registration error, whereas our uncertainty estimates correlate much better. % with the reference registration error. Crucially, the results also show that uncertainty-aware fitting of transformations improves the registration accuracy of brain MRI scans. Finally, we illustrate how sampling from the posterior distribution of the transformations can be used to propagate uncertainties to downstream neuroimaging tasks. Code is available at: https://github.com/HuXiaoling/Regre4Regis.
Related papers
- From Registration Uncertainty to Segmentation Uncertainty [11.294691606431526]
We propose a novel framework to concurrently estimate both the epistemic and aleatoric segmentation uncertainties for image registration.
By introducing segmentation uncertainty along with existing methods for estimating registration uncertainty, we offer vital insights into the potential uncertainties at different stages of image registration.
arXiv Detail & Related papers (2024-03-08T07:16:14Z) - Heteroscedastic Uncertainty Estimation Framework for Unsupervised Registration [32.081258147692395]
We propose a framework for heteroscedastic image uncertainty estimation.
It can adaptively reduce the influence of regions with high uncertainty during unsupervised registration.
Our method consistently outperforms baselines and produces sensible uncertainty estimates.
arXiv Detail & Related papers (2023-12-01T01:03:06Z) - Uncertainty Estimation and Out-of-Distribution Detection for Deep
Learning-Based Image Reconstruction using the Local Lipschitz [9.143327181265976]
Supervised deep learning-based approaches have been investigated for solving inverse problems including image reconstruction.
It is essential to assess whether a given input falls within the training data distribution for diagnostic purposes.
We propose a method based on the local Lipschitz-based metric to distinguish out-of-distribution images from in-distribution with an area under the curve of 99.94%.
arXiv Detail & Related papers (2023-05-12T17:17:01Z) - Benchmarking common uncertainty estimation methods with
histopathological images under domain shift and label noise [62.997667081978825]
In high-risk environments, deep learning models need to be able to judge their uncertainty and reject inputs when there is a significant chance of misclassification.
We conduct a rigorous evaluation of the most commonly used uncertainty and robustness methods for the classification of Whole Slide Images.
We observe that ensembles of methods generally lead to better uncertainty estimates as well as an increased robustness towards domain shifts and label noise.
arXiv Detail & Related papers (2023-01-03T11:34:36Z) - Disentangled Uncertainty and Out of Distribution Detection in Medical
Generative Models [7.6146285961466]
We study disentangled uncertainties in image to image translation tasks in the medical domain.
We use CycleGAN to convert T1-weighted brain MRI scans to T2-weighted brain MRI scans.
arXiv Detail & Related papers (2022-11-11T14:45:16Z) - Uncertainty quantification in non-rigid image registration via
stochastic gradient Markov chain Monte Carlo [14.296549721024736]
We develop a new Bayesian model for non-rigid registration of three-dimensional medical images, with a focus on uncertainty quantification.
We explore connections between the Markov chain Monte Carlo by backpropagation and the variational inference by backpropagation frameworks.
We compare the model in terms of both image registration accuracy and uncertainty quantification to VoxelMorph, a state-of-the-art image registration model based on deep learning.
arXiv Detail & Related papers (2021-10-25T22:05:20Z) - Bayesian Uncertainty Estimation of Learned Variational MRI
Reconstruction [63.202627467245584]
We introduce a Bayesian variational framework to quantify the model-immanent (epistemic) uncertainty.
We demonstrate that our approach yields competitive results for undersampled MRI reconstruction.
arXiv Detail & Related papers (2021-02-12T18:08:14Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
We present a novel probabilistic deep learning approach for concurrent 3D surface reconstruction from sparse 2D MR image data and aleatoric uncertainty prediction.
Our method is capable of reconstructing large surface meshes from three quasi-orthogonal MR imaging slices from limited training sets.
arXiv Detail & Related papers (2020-10-05T14:18:52Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
We demonstrate that predictive uncertainty estimated by the current methods does not highly correlate with prediction error.
We propose a novel method that estimates the target labels and magnitude of the prediction error in two steps.
arXiv Detail & Related papers (2020-02-13T15:55:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.