Adaptive Correspondence Scoring for Unsupervised Medical Image Registration
- URL: http://arxiv.org/abs/2312.00837v2
- Date: Thu, 18 Jul 2024 02:26:42 GMT
- Title: Adaptive Correspondence Scoring for Unsupervised Medical Image Registration
- Authors: Xiaoran Zhang, John C. Stendahl, Lawrence Staib, Albert J. Sinusas, Alex Wong, James S. Duncan,
- Abstract summary: Existing methods rely on image reconstruction as the primary supervision signal.
We propose an adaptive framework that re-weights the error residuals with a correspondence scoring map during training.
Our framework consistently outperforms other methods both quantitatively and qualitatively.
- Score: 9.294341405888158
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose an adaptive training scheme for unsupervised medical image registration. Existing methods rely on image reconstruction as the primary supervision signal. However, nuisance variables (e.g. noise and covisibility), violation of the Lambertian assumption in physical waves (e.g. ultrasound), and inconsistent image acquisition can all cause a loss of correspondence between medical images. As the unsupervised learning scheme relies on intensity constancy between images to establish correspondence for reconstruction, this introduces spurious error residuals that are not modeled by the typical training objective. To mitigate this, we propose an adaptive framework that re-weights the error residuals with a correspondence scoring map during training, preventing the parametric displacement estimator from drifting away due to noisy gradients, which leads to performance degradation. To illustrate the versatility and effectiveness of our method, we tested our framework on three representative registration architectures across three medical image datasets along with other baselines. Our adaptive framework consistently outperforms other methods both quantitatively and qualitatively. Paired t-tests show that our improvements are statistically significant. Code available at: \url{https://voldemort108x.github.io/AdaCS/}.
Related papers
- Deep-learning-based groupwise registration for motion correction of cardiac $T_1$ mapping [7.69096935566025]
We propose a novel deep-learning-based groupwise registration framework, which omits the need for a template, and registers all baseline images simultaneously.
We extensively evaluated our method, termed PCA-Relax'', and other baseline methods on an in-house cardiac MRI dataset.
The proposed PCA-Relax showed further improved performance of registration and mapping over well-established baselines.
arXiv Detail & Related papers (2024-06-18T10:00:23Z) - Learning to Rank Patches for Unbiased Image Redundancy Reduction [80.93989115541966]
Images suffer from heavy spatial redundancy because pixels in neighboring regions are spatially correlated.
Existing approaches strive to overcome this limitation by reducing less meaningful image regions.
We propose a self-supervised framework for image redundancy reduction called Learning to Rank Patches.
arXiv Detail & Related papers (2024-03-31T13:12:41Z) - Heteroscedastic Uncertainty Estimation Framework for Unsupervised Registration [32.081258147692395]
We propose a framework for heteroscedastic image uncertainty estimation.
It can adaptively reduce the influence of regions with high uncertainty during unsupervised registration.
Our method consistently outperforms baselines and produces sensible uncertainty estimates.
arXiv Detail & Related papers (2023-12-01T01:03:06Z) - Deformable multi-modal image registration for the correlation between
optical measurements and histology images [0.20482269513546453]
The correlation of optical measurements with a correct pathology label is often hampered by imprecise registration caused by deformations in histology images.
This study explores an automated multi-modal image registration technique utilizing deep learning principles to align snapshot breast specimen images with corresponding histology images.
arXiv Detail & Related papers (2023-11-24T11:14:39Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
We propose a novel Attentive Symmetric Auto-encoder based on Vision Transformer (ViT) for 3D brain MRI segmentation tasks.
In the pre-training stage, the proposed auto-encoder pays more attention to reconstruct the informative patches according to the gradient metrics.
Experimental results show that our proposed attentive symmetric auto-encoder outperforms the state-of-the-art self-supervised learning methods and medical image segmentation models.
arXiv Detail & Related papers (2022-09-19T09:43:19Z) - Supervision by Denoising for Medical Image Segmentation [17.131944478890293]
We propose "supervision by denoising" (SUD), a framework that enables us to supervise models using their own soft labels.
SUD unifies averaging and spatial denoising techniques under a denoising framework and alternates denoising and model weight update steps.
As example applications, we apply SUD to two problems arising from biomedical imaging.
arXiv Detail & Related papers (2022-02-07T05:29:16Z) - A low-rank representation for unsupervised registration of medical
images [10.499611180329804]
We propose a novel approach based on a low-rank representation, i.e., Regnet-LRR, to tackle the problem of noisy data registration scenarios.
We show that the low-rank representation can boost the ability and robustness of models as well as bring significant improvements in noisy data registration scenarios.
arXiv Detail & Related papers (2021-05-20T07:04:10Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
We devise a hierarchical generative model that captures the multi-scale patch distribution of each training image.
The anomaly score is obtained by aggregating the patch-based votes of the correct transformation across scales and image regions.
arXiv Detail & Related papers (2021-04-29T17:49:48Z) - Shared Prior Learning of Energy-Based Models for Image Reconstruction [69.72364451042922]
We propose a novel learning-based framework for image reconstruction particularly designed for training without ground truth data.
In the absence of ground truth data, we change the loss functional to a patch-based Wasserstein functional.
In shared prior learning, both aforementioned optimal control problems are optimized simultaneously with shared learned parameters of the regularizer.
arXiv Detail & Related papers (2020-11-12T17:56:05Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.