論文の概要: Survey of Security Issues in Memristor-based Machine Learning Accelerators for RF Analysis
- arxiv url: http://arxiv.org/abs/2312.00942v1
- Date: Fri, 1 Dec 2023 21:44:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 13:25:19.051046
- Title: Survey of Security Issues in Memristor-based Machine Learning Accelerators for RF Analysis
- Title(参考訳): RF解析のためのメムリスタ型機械学習加速器のセキュリティ問題調査
- Authors: William Lillis, Max Cohen Hoffing, Wayne Burleson,
- Abstract要約: 我々は,新しいミームリスタと従来のCMOSを組み合わせた新しいコンピューティングパラダイムのセキュリティ面について検討する。
Memristorは従来のCMOSとは異なる特性を持ち、攻撃者によって悪用される可能性がある。
混合信号近似計算モデルは、従来のデジタル実装とは異なる脆弱性を持つ。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore security aspects of a new computing paradigm that combines novel memristors and traditional Complimentary Metal Oxide Semiconductor (CMOS) to construct a highly efficient analog and/or digital fabric that is especially well-suited to Machine Learning (ML) inference processors for Radio Frequency (RF) signals. Memristors have different properties than traditional CMOS which can potentially be exploited by attackers. In addition, the mixed signal approximate computing model has different vulnerabilities than traditional digital implementations. However both the memristor and the ML computation can be leveraged to create security mechanisms and countermeasures ranging from lightweight cryptography, identifiers (e.g. Physically Unclonable Functions (PUFs), fingerprints, and watermarks), entropy sources, hardware obfuscation and leakage/attack detection methods. Three different threat models are proposed: 1) Supply Chain, 2) Physical Attacks, and 3) Remote Attacks. For each threat model, potential vulnerabilities and defenses are identified. This survey reviews a variety of recent work from the hardware and ML security literature and proposes open problems for both attack and defense. The survey emphasizes the growing area of RF signal analysis and identification in terms of the commercial space, as well as military applications and threat models. We differ from other other recent surveys that target ML in general, neglecting RF applications.
- Abstract(参考訳): 本稿では,新しいメムリスタと従来の複合金属酸化物半導体(CMOS)を組み合わせて,特に無線周波数(RF)信号の機械学習(ML)推論プロセッサに適した,高効率なアナログおよび/またはデジタルファブリックを構築する,新たなコンピューティングパラダイムのセキュリティ面について検討する。
Memristorは従来のCMOSとは異なる特性を持ち、攻撃者によって悪用される可能性がある。
さらに、混合信号近似計算モデルには、従来のデジタル実装とは異なる脆弱性がある。
しかし、memristorとML計算の両方を利用して、軽量暗号、識別子(PUF(Physically Unclonable Function)、指紋、透かしなど)、エントロピーソース、ハードウェア難読化、リーク/アタック検出方法など、セキュリティメカニズムと対策を作成することができる。
3つの異なる脅威モデルが提案されている。
1)サプライチェーン
2)身体的攻撃、及び
3)遠隔攻撃。
各脅威モデルについて、潜在的な脆弱性と防御が特定される。
この調査は、ハードウェアとMLのセキュリティ文献からのさまざまな研究をレビューし、攻撃と防御の両方にオープンな問題を提案する。
この調査は、軍事的応用や脅威モデルと同様に、商業空間におけるRF信号の分析と識別の領域の増大を強調している。
我々は、一般の機械学習をターゲットにした他の調査と異なり、RFアプリケーションを無視している。
関連論文リスト
- SoK: A Systems Perspective on Compound AI Threats and Countermeasures [3.458371054070399]
我々は、複合AIシステムに適用可能な、異なるソフトウェアとハードウェアの攻撃について議論する。
複数の攻撃機構を組み合わせることで、孤立攻撃に必要な脅威モデル仮定をいかに削減できるかを示す。
論文 参考訳(メタデータ) (2024-11-20T17:08:38Z) - TinyML Security: Exploring Vulnerabilities in Resource-Constrained Machine Learning Systems [12.33137384257399]
Tiny Machine Learning (TinyML)システムは、リソースに制約のあるデバイス上での機械学習推論を可能にする。
TinyMLモデルはセキュリティ上のリスクを生じさせ、重み付けによって機密性の高いデータやクエリインターフェースをエンコードする可能性がある。
この論文は、TinyMLのセキュリティ脅威に関する最初の徹底的な調査を提供する。
論文 参考訳(メタデータ) (2024-11-11T16:41:22Z) - Defining and Evaluating Physical Safety for Large Language Models [62.4971588282174]
大型言語モデル (LLM) は、ドローンのようなロボットシステムを制御するためにますます使われている。
現実世界のアプリケーションに物理的な脅威や害をもたらすリスクは、まだ解明されていない。
我々は,ドローンの物理的安全性リスクを,(1)目標脅威,(2)目標脅威,(3)インフラ攻撃,(4)規制違反の4つのカテゴリに分類する。
論文 参考訳(メタデータ) (2024-11-04T17:41:25Z) - FedMADE: Robust Federated Learning for Intrusion Detection in IoT Networks Using a Dynamic Aggregation Method [7.842334649864372]
さまざまな分野にわたるIoT(Internet of Things)デバイスは、深刻なネットワークセキュリティ上の懸念をエスカレートしている。
サイバー攻撃分類のための従来の機械学習(ML)ベースの侵入検知システム(IDS)は、IoTデバイスからトラフィック分析のための集中サーバへのデータ送信を必要とし、深刻なプライバシー上の懸念を引き起こす。
我々はFedMADEという新しい動的アグリゲーション手法を紹介した。この手法はデバイスをトラフィックパターンによってクラスタリングし、その全体的なパフォーマンスに対する貢献に基づいてローカルモデルを集約する。
論文 参考訳(メタデータ) (2024-08-13T18:42:34Z) - Stumbling Blocks: Stress Testing the Robustness of Machine-Generated
Text Detectors Under Attacks [48.32116554279759]
一般的な機械生成テキスト検出器の強靭性について,編集,パラフレージング,プロンプト,コジェネレーションの様々なカテゴリの攻撃下で検討する。
我々の攻撃はジェネレータLSMへの限られたアクセスを前提としており、異なる予算レベルで異なる攻撃に対する検出器の性能を比較する。
全ての検知器を平均すると、全ての攻撃で性能は35%低下する。
論文 参考訳(メタデータ) (2024-02-18T16:36:00Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - Code Polymorphism Meets Code Encryption: Confidentiality and Side-Channel Protection of Software Components [0.0]
PolEnは、サイドチャネル攻撃を効果的に軽減するために、対策を組み合わせるツールチェーンとプロセッサアーキテクチャである。
コード暗号化はプロセッサ拡張によってサポートされ、マシン命令はCPU内でのみ復号化される。
プログラムの可観測環境を定期的に変更し、攻撃者が予測できないようにする。
論文 参考訳(メタデータ) (2023-10-11T09:16:10Z) - Vulnerability of Machine Learning Approaches Applied in IoT-based Smart Grid: A Review [51.31851488650698]
機械学習(ML)は、IoT(Internet-of-Things)ベースのスマートグリッドでの使用頻度が高まっている。
電力信号に注入された逆方向の歪みは システムの正常な制御と操作に大きな影響を及ぼす
安全クリティカルパワーシステムに適用されたMLsgAPPの脆弱性評価を行うことが不可欠である。
論文 参考訳(メタデータ) (2023-08-30T03:29:26Z) - Adversarial attacks and defenses on ML- and hardware-based IoT device
fingerprinting and identification [0.0]
本研究では,個々のデバイス識別のためのハードウェア性能挙動に基づくLSTM-CNNアーキテクチャを提案する。
これまでは、45台のRaspberry Piデバイスから収集されたハードウェアパフォーマンスデータセットを使用して、提案されたアーキテクチャと比較されてきた。
回避攻撃に対するモデルレジリエンスを改善するために 敵の訓練と モデル蒸留防衛技術が選択される。
論文 参考訳(メタデータ) (2022-12-30T13:11:35Z) - Invisible for both Camera and LiDAR: Security of Multi-Sensor Fusion
based Perception in Autonomous Driving Under Physical-World Attacks [62.923992740383966]
本稿では,MDFに基づくADシステムにおけるセキュリティ問題の最初の研究について述べる。
物理的に実現可能な逆3Dプリントオブジェクトを生成し、ADシステムが検出に失敗してクラッシュする。
以上の結果から,攻撃は様々なオブジェクトタイプおよびMSFに対して90%以上の成功率を達成した。
論文 参考訳(メタデータ) (2021-06-17T05:11:07Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
安全クリティカルなアプリケーションにディープニューラルネットワーク(DNN)を使用することは、多数のモデル固有の欠点のために困難です。
近年,これらの安全対策を目的とした最先端技術動物園が出現している。
本稿は、機械学習の専門家と安全エンジニアの両方に対処する。
論文 参考訳(メタデータ) (2021-04-29T09:54:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。