論文の概要: Entangled Threats: A Unified Kill Chain Model for Quantum Machine Learning Security
- arxiv url: http://arxiv.org/abs/2507.08623v1
- Date: Fri, 11 Jul 2025 14:25:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-14 18:03:54.386118
- Title: Entangled Threats: A Unified Kill Chain Model for Quantum Machine Learning Security
- Title(参考訳): Entangled Threats: 量子機械学習セキュリティのための統一型キルチェーンモデル
- Authors: Pascal Debus, Maximilian Wendlinger, Kilian Tscharke, Daniel Herr, Cedric Brügmann, Daniel Ohl de Mello, Juris Ulmanis, Alexander Erhard, Arthur Schmidt, Fabian Petsch,
- Abstract要約: 量子機械学習(QML)システムは、古典的な機械学習の脆弱性を継承する。
本稿では,QML攻撃ベクトルの詳細な分類を,量子認識型キルチェーンフレームワークの対応する段階にマッピングする。
この研究は、量子機械学習の新たな分野において、より現実的な脅威モデリングと積極的なセキュリティ・イン・ディープス設計の基礎を提供する。
- 参考スコア(独自算出の注目度): 32.73124984242397
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum Machine Learning (QML) systems inherit vulnerabilities from classical machine learning while introducing new attack surfaces rooted in the physical and algorithmic layers of quantum computing. Despite a growing body of research on individual attack vectors - ranging from adversarial poisoning and evasion to circuit-level backdoors, side-channel leakage, and model extraction - these threats are often analyzed in isolation, with unrealistic assumptions about attacker capabilities and system environments. This fragmentation hampers the development of effective, holistic defense strategies. In this work, we argue that QML security requires more structured modeling of the attack surface, capturing not only individual techniques but also their relationships, prerequisites, and potential impact across the QML pipeline. We propose adapting kill chain models, widely used in classical IT and cybersecurity, to the quantum machine learning context. Such models allow for structured reasoning about attacker objectives, capabilities, and possible multi-stage attack paths - spanning reconnaissance, initial access, manipulation, persistence, and exfiltration. Based on extensive literature analysis, we present a detailed taxonomy of QML attack vectors mapped to corresponding stages in a quantum-aware kill chain framework that is inspired by the MITRE ATLAS for classical machine learning. We highlight interdependencies between physical-level threats (like side-channel leakage and crosstalk faults), data and algorithm manipulation (such as poisoning or circuit backdoors), and privacy attacks (including model extraction and training data inference). This work provides a foundation for more realistic threat modeling and proactive security-in-depth design in the emerging field of quantum machine learning.
- Abstract(参考訳): 量子機械学習(QML)システムは、量子コンピューティングの物理層とアルゴリズム層に根ざした新たな攻撃面を導入しながら、古典的な機械学習から脆弱性を継承する。
個人攻撃ベクターの研究は、敵の毒や脱走から回路レベルのバックドア、サイドチャネルの漏れ、モデル抽出まで増えているが、これらの脅威はしばしば、攻撃能力とシステム環境に関する非現実的な仮定で、独立して分析される。
この断片化は、効果的で総合的な防衛戦略の発展を妨げている。
この研究では、QMLセキュリティは攻撃面のより構造化されたモデリングを必要とし、個々の技術だけでなく、その関連性、前提条件、およびQMLパイプライン全体の潜在的影響をキャプチャする。
我々は,古典的ITやサイバーセキュリティで広く使用されているキルチェーンモデルを,量子機械学習の文脈に適応させることを提案する。
このようなモデルでは、攻撃対象、能力、多段階攻撃経路(偵察、初期アクセス、操作、永続性、拡張)に関する構造化された推論が可能になる。
広範な文献分析に基づいて、古典機械学習のためのMITRE ATLASにインスパイアされた量子認識型キルチェーンフレームワークにおいて、対応するステージにマッピングされたQML攻撃ベクトルの詳細な分類を提示する。
物理的レベルの脅威(サイドチャネルリークやクロストーク障害など)、データとアルゴリズムの操作(毒や回路バックドアなど)、プライバシ攻撃(モデル抽出とトレーニングデータ推論を含む)の相互依存性を強調します。
この研究は、量子機械学習の新たな分野において、より現実的な脅威モデリングと積極的なセキュリティ・イン・ディープス設計の基礎を提供する。
関連論文リスト
- Exploiting Edge Features for Transferable Adversarial Attacks in Distributed Machine Learning [54.26807397329468]
この研究は、分散ディープラーニングシステムにおいて、これまで見過ごされていた脆弱性を探究する。
中間的特徴をインターセプトする敵は、依然として深刻な脅威となる可能性がある。
本稿では,分散環境に特化して設計されたエクスプロイト戦略を提案する。
論文 参考訳(メタデータ) (2025-07-09T20:09:00Z) - Adversarial Threats in Quantum Machine Learning: A Survey of Attacks and Defenses [2.089191490381739]
量子機械学習(QML)は、量子コンピューティングと古典的な機械学習を統合して、分類、回帰、生成タスクを解決する。
本章では、クラウドベースのデプロイメント、ハイブリッドアーキテクチャ、量子生成モデルにおける脆弱性に焦点を当て、QMLシステム特有の敵の脅威について検討する。
論文 参考訳(メタデータ) (2025-06-27T01:19:49Z) - A Survey on Model Extraction Attacks and Defenses for Large Language Models [55.60375624503877]
モデル抽出攻撃は、デプロイされた言語モデルに重大なセキュリティ脅威をもたらす。
この調査は、抽出攻撃と防御攻撃の包括的分類、機能抽出への攻撃の分類、データ抽出の訓練、およびプロンプトターゲット攻撃を提供する。
モデル保護,データプライバシ保護,迅速なターゲット戦略に編成された防御機構について検討し,その効果を異なる展開シナリオで評価する。
論文 参考訳(メタデータ) (2025-06-26T22:02:01Z) - SoK: A Systems Perspective on Compound AI Threats and Countermeasures [3.458371054070399]
我々は、複合AIシステムに適用可能な、異なるソフトウェアとハードウェアの攻撃について議論する。
複数の攻撃機構を組み合わせることで、孤立攻撃に必要な脅威モデル仮定をいかに削減できるかを示す。
論文 参考訳(メタデータ) (2024-11-20T17:08:38Z) - Security Concerns in Quantum Machine Learning as a Service [2.348041867134616]
量子機械学習(Quantum Machine Learning、QML)は、変分量子回路(VQC)を用いて機械学習タスクに取り組むアルゴリズムのカテゴリである。
近年の研究では、限られたトレーニングデータサンプルからQMLモデルを効果的に一般化できることが示されている。
QMLは、古典的および量子コンピューティングリソースの両方を利用するハイブリッドモデルである。
論文 参考訳(メタデータ) (2024-08-18T18:21:24Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - MF-CLIP: Leveraging CLIP as Surrogate Models for No-box Adversarial Attacks [65.86360607693457]
敵に事前の知識がないノンボックス攻撃は、実際的な関連性にもかかわらず、比較的過小評価されている。
本研究は,大規模ビジョン・ランゲージ・モデル(VLM)をノンボックス・アタックの実行のための代理モデルとして活用するための体系的な研究である。
理論的および実証的な分析により,バニラCLIPを直接サロゲートモデルとして適用するための識別能力の不足に起因するno-boxアタックの実行に重要な制限があることが判明した。
MF-CLIP(MF-CLIP: MF-CLIP)はCLIPのサロゲートモデルとしての有効性を高める新しいフレームワークである。
論文 参考訳(メタデータ) (2023-07-13T08:10:48Z) - Exploring the Vulnerabilities of Machine Learning and Quantum Machine
Learning to Adversarial Attacks using a Malware Dataset: A Comparative
Analysis [0.0]
機械学習(ML)と量子機械学習(QML)は、複雑な問題に対処する上で大きな可能性を示している。
敵攻撃に対する感受性は、これらのシステムをセキュリティに敏感なアプリケーションにデプロイする際の懸念を引き起こす。
本稿では,マルウェアデータセットを用いた敵攻撃に対するMLモデルとQNNモデルの脆弱性の比較分析を行う。
論文 参考訳(メタデータ) (2023-05-31T06:31:42Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
量子ニューラルネットワーク(QNN)は物理世界を理解する上で重要なツールとなっているが、その利点と限界は完全には理解されていない。
本稿では,多クラス分類タスクにおけるQCの問題依存力について検討する。
我々の研究はQNNの課題依存力に光を当て、その潜在的なメリットを評価するための実践的なツールを提供する。
論文 参考訳(メタデータ) (2022-12-29T10:46:40Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
我々は、攻撃者が汎用人工知能システムにおける決定を制御できる新しい敵の摂動について研究する。
敵対的なデータ修正とは対照的に、ここで考慮する攻撃メカニズムには、AIシステム自体の変更が含まれる。
論文 参考訳(メタデータ) (2021-06-26T10:50:07Z) - Learning-Based Vulnerability Analysis of Cyber-Physical Systems [10.066594071800337]
本研究は,サイバー物理システムの脆弱性解析におけるディープラーニングの利用に焦点を当てる。
我々は,低レベル制御が拡張カルマンフィルタ(ekf)や異常検出器(anomaly detector)などに基づくcpsにおいて広く用いられている制御アーキテクチャを考える。
潜在的なセンシング攻撃が持つ影響を分析することを容易にするため、学習可能な攻撃生成器の開発が目的である。
論文 参考訳(メタデータ) (2021-03-10T06:52:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。