Spatiotemporal Transformer for Imputing Sparse Data: A Deep Learning
Approach
- URL: http://arxiv.org/abs/2312.00963v1
- Date: Fri, 1 Dec 2023 22:39:02 GMT
- Title: Spatiotemporal Transformer for Imputing Sparse Data: A Deep Learning
Approach
- Authors: Kehui Yao, Jingyi Huang, Jun Zhu
- Abstract summary: This paper introduces a novel Stemporal Transformer model (ST-Transformer) to address the issue of missing values in sparse datasets.
The model is trained using a self-supervised approach, enabling it to autonomously predict missing values from observed data points.
Its efficacy is demonstrated through its application to the SMAP 1 soil moisture data over a 36km x 36 km grid in Texas.
- Score: 19.665820528292798
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effective management of environmental resources and agricultural
sustainability heavily depends on accurate soil moisture data. However,
datasets like the SMAP/Sentinel-1 soil moisture product often contain missing
values across their spatiotemporal grid, which poses a significant challenge.
This paper introduces a novel Spatiotemporal Transformer model (ST-Transformer)
specifically designed to address the issue of missing values in sparse
spatiotemporal datasets, particularly focusing on soil moisture data. The
ST-Transformer employs multiple spatiotemporal attention layers to capture the
complex spatiotemporal correlations in the data and can integrate additional
spatiotemporal covariates during the imputation process, thereby enhancing its
accuracy. The model is trained using a self-supervised approach, enabling it to
autonomously predict missing values from observed data points. Our model's
efficacy is demonstrated through its application to the SMAP 1km soil moisture
data over a 36 x 36 km grid in Texas. It showcases superior accuracy compared
to well-known imputation methods. Additionally, our simulation studies on other
datasets highlight the model's broader applicability in various spatiotemporal
imputation tasks.
Related papers
- Generative Data Assimilation of Sparse Weather Station Observations at Kilometer Scales [5.453657018459705]
We demonstrate the viability of score-based data assimilation in the context of realistically complex km-scale weather.
By incorporating observations from 40 weather stations, 10% lower RMSEs on left-out stations are attained.
It is a ripe time to explore extensions that combine increasingly ambitious regional state generators with an increasing set of in situ, ground-based, and satellite remote sensing data streams.
arXiv Detail & Related papers (2024-06-19T10:28:11Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - ST-DPGAN: A Privacy-preserving Framework for Spatiotemporal Data Generation [19.18074489351738]
We propose a Graph-based model for generating privacy-protected data.
Experiments conducted on three real-worldtemporal datasets validate the efficacy of our model.
The prediction model trained on our generated data maintains a competitive edge compared to the model trained on the original data.
arXiv Detail & Related papers (2024-06-04T04:43:54Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - SSIN: Self-Supervised Learning for Rainfall Spatial Interpolation [37.212272184144]
We propose a data-driven self-supervised learning framework for rainfall spatial analysis.
By mining latent spatial patterns from historical data, SpaFormer can learn informative embeddings for raw data and then adaptively model spatial correlations.
Our method outperforms the state-of-the-art solutions in experiments on two real-world raingauge datasets.
arXiv Detail & Related papers (2023-11-27T04:23:47Z) - GATGPT: A Pre-trained Large Language Model with Graph Attention Network
for Spatiotemporal Imputation [19.371155159744934]
In real-world settings, such data often contain missing elements due to issues like sensor malfunctions and data transmission errors.
The objective oftemporal imputation is to estimate these missing values by understanding the inherent spatial and temporal relationships in the observed time series.
Traditionally, intricatetemporal imputation has relied on specific architectures, which suffer from limited applicability and high computational complexity.
In contrast our approach integrates pre-trained large language models (LLMs) into intricatetemporal imputation, introducing a groundbreaking framework, GATGPT.
arXiv Detail & Related papers (2023-11-24T08:15:11Z) - SERT: A Transfomer Based Model for Spatio-Temporal Sensor Data with
Missing Values for Environmental Monitoring [0.0]
Data collected from sensors often contain missing values due to faulty equipment or maintenance issues.
We propose two models that are capable of performing multivariate-temporal forecasting while handling missing data without need for imputation.
arXiv Detail & Related papers (2023-06-05T17:06:23Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.