Large Language Models Are Zero-Shot Text Classifiers
- URL: http://arxiv.org/abs/2312.01044v1
- Date: Sat, 2 Dec 2023 06:33:23 GMT
- Title: Large Language Models Are Zero-Shot Text Classifiers
- Authors: Zhiqiang Wang, Yiran Pang, Yanbin Lin
- Abstract summary: Large language models (LLMs) have become extensively used across various sub-disciplines of natural language processing (NLP)
In NLP, text classification problems have garnered considerable focus, but still faced with some limitations related to expensive computational cost, time consumption, and robust performance to unseen classes.
With the proposal of chain of thought prompting (CoT), LLMs can be implemented using zero-shot learning (ZSL) with the step by step reasoning prompts.
- Score: 3.617781755808837
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrained large language models (LLMs) have become extensively used across
various sub-disciplines of natural language processing (NLP). In NLP, text
classification problems have garnered considerable focus, but still faced with
some limitations related to expensive computational cost, time consumption, and
robust performance to unseen classes. With the proposal of chain of thought
prompting (CoT), LLMs can be implemented using zero-shot learning (ZSL) with
the step by step reasoning prompts, instead of conventional question and answer
formats. The zero-shot LLMs in the text classification problems can alleviate
these limitations by directly utilizing pretrained models to predict both seen
and unseen classes. Our research primarily validates the capability of GPT
models in text classification. We focus on effectively utilizing prompt
strategies to various text classification scenarios. Besides, we compare the
performance of zero shot LLMs with other state of the art text classification
methods, including traditional machine learning methods, deep learning methods,
and ZSL methods. Experimental results demonstrate that the performance of LLMs
underscores their effectiveness as zero-shot text classifiers in three of the
four datasets analyzed. The proficiency is especially advantageous for small
businesses or teams that may not have extensive knowledge in text
classification.
Related papers
- Vulnerability of LLMs to Vertically Aligned Text Manipulations [108.6908427615402]
Large language models (LLMs) have become highly effective at performing text classification tasks.
modifying input formats, such as vertically aligning words for encoder-based models, can substantially lower accuracy in text classification tasks.
Do decoder-based LLMs exhibit similar vulnerabilities to vertically formatted text input?
arXiv Detail & Related papers (2024-10-26T00:16:08Z) - LLMEmbed: Rethinking Lightweight LLM's Genuine Function in Text Classification [13.319594321038926]
We propose a simple and effective transfer learning strategy, namely LLMEmbed, to address this classical but challenging task.
We perform extensive experiments on publicly available datasets, and the results show that LLMEmbed achieves strong performance while enjoys low training overhead.
arXiv Detail & Related papers (2024-06-06T03:46:59Z) - Adaptable and Reliable Text Classification using Large Language Models [7.962669028039958]
This paper introduces an adaptable and reliable text classification paradigm, which leverages Large Language Models (LLMs)
We evaluated the performance of several LLMs, machine learning algorithms, and neural network-based architectures on four diverse datasets.
It is shown that the system's performance can be further enhanced through few-shot or fine-tuning strategies.
arXiv Detail & Related papers (2024-05-17T04:05:05Z) - Language Models for Text Classification: Is In-Context Learning Enough? [54.869097980761595]
Recent foundational language models have shown state-of-the-art performance in many NLP tasks in zero- and few-shot settings.
An advantage of these models over more standard approaches is the ability to understand instructions written in natural language (prompts)
This makes them suitable for addressing text classification problems for domains with limited amounts of annotated instances.
arXiv Detail & Related papers (2024-03-26T12:47:39Z) - TriSum: Learning Summarization Ability from Large Language Models with Structured Rationale [66.01943465390548]
We introduce TriSum, a framework for distilling large language models' text summarization abilities into a compact, local model.
Our method enhances local model performance on various benchmarks.
It also improves interpretability by providing insights into the summarization rationale.
arXiv Detail & Related papers (2024-03-15T14:36:38Z) - Pushing The Limit of LLM Capacity for Text Classification [27.684335455517417]
We propose RGPT, an adaptive boosting framework tailored to produce a specialized text classification LLM.
We show that RGPT significantly outperforms 8 SOTA PLMs and 7 SOTA LLMs on four benchmarks by 1.36% on average.
arXiv Detail & Related papers (2024-02-12T08:14:03Z) - Token Prediction as Implicit Classification to Identify LLM-Generated
Text [37.89852204279844]
This paper introduces a novel approach for identifying the possible large language models (LLMs) involved in text generation.
Instead of adding an additional classification layer to a base LM, we reframe the classification task as a next-token prediction task.
We utilize the Text-to-Text Transfer Transformer (T5) model as the backbone for our experiments.
arXiv Detail & Related papers (2023-11-15T06:33:52Z) - Language models are weak learners [71.33837923104808]
We show that prompt-based large language models can operate effectively as weak learners.
We incorporate these models into a boosting approach, which can leverage the knowledge within the model to outperform traditional tree-based boosting.
Results illustrate the potential for prompt-based LLMs to function not just as few-shot learners themselves, but as components of larger machine learning pipelines.
arXiv Detail & Related papers (2023-06-25T02:39:19Z) - Prompting Language-Informed Distribution for Compositional Zero-Shot Learning [73.49852821602057]
Compositional zero-shot learning (CZSL) task aims to recognize unseen compositional visual concepts.
We propose a model by prompting the language-informed distribution, aka., PLID, for the task.
Experimental results on MIT-States, UT-Zappos, and C-GQA datasets show the superior performance of the PLID to the prior arts.
arXiv Detail & Related papers (2023-05-23T18:00:22Z) - Active Learning Principles for In-Context Learning with Large Language
Models [65.09970281795769]
This paper investigates how Active Learning algorithms can serve as effective demonstration selection methods for in-context learning.
We show that in-context example selection through AL prioritizes high-quality examples that exhibit low uncertainty and bear similarity to the test examples.
arXiv Detail & Related papers (2023-05-23T17:16:04Z) - Beyond prompting: Making Pre-trained Language Models Better Zero-shot
Learners by Clustering Representations [24.3378487252621]
We show that zero-shot text classification can be improved simply by clustering texts in the embedding spaces of pre-trained language models.
Our approach achieves an average of 20% absolute improvement over prompt-based zero-shot learning.
arXiv Detail & Related papers (2022-10-29T16:01:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.