A Hierarchical Security Events Correlation Model for Real-time Cyber Threat Detection and Response
- URL: http://arxiv.org/abs/2312.01219v2
- Date: Sat, 9 Dec 2023 17:20:42 GMT
- Title: A Hierarchical Security Events Correlation Model for Real-time Cyber Threat Detection and Response
- Authors: Herbert Maosa, Karim Ouazzane, Mohamed Chahine Ghanem,
- Abstract summary: We develop a novel hierarchical event correlation model that promises to reduce the number of alerts issued by an Intrusion Detection System.
The proposed model takes the best of features from similarity and graph-based correlation techniques to deliver an ensemble capability not possible by either approach separately.
The model is implemented as a proof of concept with experiments run on the DARPA 99 Intrusion detection set.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intrusion detection systems perform post-compromise detection of security breaches whenever preventive measures such as firewalls do not avert an attack. However, these systems raise a vast number of alerts that must be analysed and triaged by security analysts. This process is largely manual, tedious and time-consuming. Alert correlation is a technique that tries to reduce the number of intrusion alerts by aggregating those that are related in some way. However, the correlation is performed outside the IDS through third-party systems and tools, after the high volume of alerts has already been raised. These other third-party systems add to the complexity of security operations. In this paper, we build on the very researched area of correlation techniques by developing a novel hierarchical event correlation model that promises to reduce the number of alerts issued by an Intrusion Detection System. This is achieved by correlating the events before the IDS classifies them. The proposed model takes the best of features from similarity and graph-based correlation techniques to deliver an ensemble capability not possible by either approach separately. Further, we propose a correlation process for correlation of events rather than alerts as is the case in current art. We further develop our own correlation and clustering algorithm which is tailor-made to the correlation and clustering of network event data. The model is implemented as a proof of concept with experiments run on the DARPA 99 Intrusion detection set. The correlation achieved 87 percent data reduction through aggregation, producing nearly 21000 clusters in about 30 seconds.
Related papers
- AdvQDet: Detecting Query-Based Adversarial Attacks with Adversarial Contrastive Prompt Tuning [93.77763753231338]
Adversarial Contrastive Prompt Tuning (ACPT) is proposed to fine-tune the CLIP image encoder to extract similar embeddings for any two intermediate adversarial queries.
We show that ACPT can detect 7 state-of-the-art query-based attacks with $>99%$ detection rate within 5 shots.
We also show that ACPT is robust to 3 types of adaptive attacks.
arXiv Detail & Related papers (2024-08-04T09:53:50Z) - EG-ConMix: An Intrusion Detection Method based on Graph Contrastive Learning [4.140068761522124]
We propose an EG-ConMix method based on E-GraphSAGE, incorporating a data augmentation module to fix the problem of data imbalance.
EG-ConMix exhibits significant advantages in terms of training speed and accuracy for large-scale graphs.
arXiv Detail & Related papers (2024-03-24T04:09:48Z) - Knowledge-aware Alert Aggregation in Large-scale Cloud Systems: a Hybrid
Approach [28.71225642605041]
COLA is a novel hybrid approach based on correlation mining and LLM (Large Language Model) reasoning for online alert aggregation.
We evaluate COLA on three datasets collected from the production environment of a large-scale cloud platform.
Results show COLA achieves F1-scores from 0.901 to 0.930, outperforming state-of-the-art methods and achieving comparable efficiency.
arXiv Detail & Related papers (2024-03-11T07:48:35Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
Federated learning (FL) is susceptible to poisoning attacks.
FreqFed is a novel aggregation mechanism that transforms the model updates into the frequency domain.
We demonstrate that FreqFed can mitigate poisoning attacks effectively with a negligible impact on the utility of the aggregated model.
arXiv Detail & Related papers (2023-12-07T16:56:24Z) - Effective In-vehicle Intrusion Detection via Multi-view Statistical
Graph Learning on CAN Messages [9.04771951523525]
In-vehicle network (IVN) is facing a wide variety of complex and changing external cyber-attacks.
Only coarse-grained recognition can be achieved in current mainstream intrusion detection mechanisms.
We propose StatGraph: an Effective Multi-view Statistical Graph Learning Intrusion Detection.
arXiv Detail & Related papers (2023-11-13T03:49:55Z) - Disentangled Causal Graph Learning for Online Unsupervised Root Cause
Analysis [49.910053255238566]
Root cause analysis (RCA) can identify the root causes of system faults/failures by analyzing system monitoring data.
Previous research has mostly focused on developing offline RCA algorithms, which often require manually initiating the RCA process.
We propose CORAL, a novel online RCA framework that can automatically trigger the RCA process and incrementally update the RCA model.
arXiv Detail & Related papers (2023-05-18T01:27:48Z) - Abnormal Event Detection via Hypergraph Contrastive Learning [54.80429341415227]
Abnormal event detection plays an important role in many real applications.
In this paper, we study the unsupervised abnormal event detection problem in Attributed Heterogeneous Information Network.
A novel hypergraph contrastive learning method, named AEHCL, is proposed to fully capture abnormal event patterns.
arXiv Detail & Related papers (2023-04-02T08:23:20Z) - Detection of Correlated Alarms Using Graph Embedding [0.0]
This paper tries to present a novel method for detecting correlated alarms based on artificial intelligence methods.
The proposed method is based on graph embedding and alarm clustering, resulting in the detection of correlated alarms.
arXiv Detail & Related papers (2022-01-17T05:50:45Z) - TFDPM: Attack detection for cyber-physical systems with diffusion
probabilistic models [10.389972581904999]
We propose TFDPM, a general framework for attack detection tasks in CPSs.
It simultaneously extracts temporal pattern and feature pattern given the historical data.
The noise scheduling network increases the detection speed by three times.
arXiv Detail & Related papers (2021-12-20T13:13:29Z) - ADC: Adversarial attacks against object Detection that evade Context
consistency checks [55.8459119462263]
We show that even context consistency checks can be brittle to properly crafted adversarial examples.
We propose an adaptive framework to generate examples that subvert such defenses.
Our results suggest that how to robustly model context and check its consistency, is still an open problem.
arXiv Detail & Related papers (2021-10-24T00:25:09Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.