論文の概要: Mendata: A Framework to Purify Manipulated Training Data
- arxiv url: http://arxiv.org/abs/2312.01281v1
- Date: Sun, 3 Dec 2023 04:40:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-05 18:04:55.629094
- Title: Mendata: A Framework to Purify Manipulated Training Data
- Title(参考訳): Mendata: 操作型トレーニングデータを浄化するフレームワーク
- Authors: Zonghao Huang, Neil Gong, Michael K. Reiter
- Abstract要約: 我々は、操作したトレーニングデータを浄化するフレームワークであるMendataを提案する。
Mendataはトレーニングインプットを乱してユーティリティを保持するが、参照データと同様に分散される。
我々は、最先端のデータ中毒やデータ追跡技術にMendataを適用して、その効果を実証する。
- 参考スコア(独自算出の注目度): 12.406255198638064
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Untrusted data used to train a model might have been manipulated to endow the
learned model with hidden properties that the data contributor might later
exploit. Data purification aims to remove such manipulations prior to training
the model. We propose Mendata, a novel framework to purify manipulated training
data. Starting from a small reference dataset in which a large majority of the
inputs are clean, Mendata perturbs the training inputs so that they retain
their utility but are distributed similarly (as measured by Wasserstein
distance) to the reference data, thereby eliminating hidden properties from the
learned model. A key challenge is how to find such perturbations, which we
address by formulating a min-max optimization problem and developing a two-step
method to iteratively solve it. We demonstrate the effectiveness of Mendata by
applying it to defeat state-of-the-art data poisoning and data tracing
techniques.
- Abstract(参考訳): モデルのトレーニングに使用される信頼できないデータは、後にデータコントリビュータが悪用する可能性のある隠れたプロパティを学習モデルに与えるために操作された可能性がある。
データ精製は、モデルをトレーニングする前にそのような操作を取り除くことを目的としている。
操作したトレーニングデータを浄化する新しいフレームワークであるMendataを提案する。
入力の大半がクリーンな小さな参照データセットから始まり、Mendataはトレーニング入力を摂動させ、それらのユーティリティを保持するが、参照データに(ワッサースタイン距離で測定されたように)同じように)分配されるので、学習モデルから隠れたプロパティを除去する。
鍵となる課題はそのような摂動を見出す方法であり、最小最適化問題を定式化し、反復的に解く二段階法を開発することで解決する。
我々は、最先端のデータ中毒やデータ追跡技術にMendataを適用し、その効果を実証する。
関連論文リスト
- Data Taggants: Dataset Ownership Verification via Harmless Targeted Data Poisoning [12.80649024603656]
本稿では,非バックドアデータセットのオーナシップ検証技術であるデータタグを新たに導入する。
我々は、VTモデルとResNetモデルと最先端のトレーニングレシピを用いて、ImageNet1kの包括的で現実的な実験を通してアプローチを検証する。
論文 参考訳(メタデータ) (2024-10-09T12:49:23Z) - TCGU: Data-centric Graph Unlearning based on Transferable Condensation [36.670771080732486]
Transferable Condensation Graph Unlearning (TCGU)は、ゼロガンスグラフアンラーニングのためのデータ中心のソリューションである。
我々は,TGUが既存のGU手法よりもモデルユーティリティ,未学習効率,未学習効率において優れた性能を発揮することを示す。
論文 参考訳(メタデータ) (2024-10-09T02:14:40Z) - Corrective Machine Unlearning [22.342035149807923]
我々は、未知の操作が学習モデルに与える影響を緩和する問題として、矯正機械学習を定式化する。
削除セットを使わずにスクラッチから再学習するなど、既存の未学習手法の多くは、有効な修正未学習のために、操作されたデータの大部分を識別する必要がある。
選択的シナプス減衰法(Selective Synaptic Dampening)は, 操作したサンプルのごく一部で, 有害な効果を学習することなく, 限られた成功を達成している。
論文 参考訳(メタデータ) (2024-02-21T18:54:37Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
最近のデータプライバシ法は、機械学習への関心を喚起している。
課題は、残りのデータセットに関する知識を変更することなく、忘れたデータに関する情報を捨てることである。
我々は、プロジェクテッド・グラディエント・アンラーニング(PGU)という、プロジェクテッド・グラディエント・ベースの学習手法を採用する。
トレーニングデータセットがもはやアクセスできない場合でも、スクラッチからスクラッチで再トレーニングされたモデルと同じような振る舞いをするモデルを、我々のアンラーニング手法が生成できることを実証するための実証的な証拠を提供する。
論文 参考訳(メタデータ) (2023-12-07T07:17:24Z) - AI Model Disgorgement: Methods and Choices [127.54319351058167]
本稿では,現代の機械学習システムに適用可能な分類法を紹介する。
学習モデルにおけるデータ「効果の除去」の意味を,スクラッチからリトレーニングする必要のない方法で検討する。
論文 参考訳(メタデータ) (2023-04-07T08:50:18Z) - Learning to Unlearn: Instance-wise Unlearning for Pre-trained
Classifiers [71.70205894168039]
そこでは、事前訓練されたモデルからインスタンスのセットに関する情報を削除することを目標としています。
本稿では,1)表現レベルでの忘れを克服するために,敵の例を活用すること,2)不必要な情報を伝播するネットワークパラメータをピンポイントする重み付け指標を活用すること,の2つの方法を提案する。
論文 参考訳(メタデータ) (2023-01-27T07:53:50Z) - On-the-fly Denoising for Data Augmentation in Natural Language
Understanding [101.46848743193358]
よりクリーンなオリジナルデータに基づいて訓練された有機教師モデルによって提供されるソフトな拡張ラベルから学習する,データ拡張のためのオンザフライデノケーション手法を提案する。
本手法は,一般的な拡張手法に適用でき,テキスト分類と質問応答の両タスクの性能を一貫して向上させることができる。
論文 参考訳(メタデータ) (2022-12-20T18:58:33Z) - Machine Unlearning Method Based On Projection Residual [23.24026891609028]
本稿ではニュートン法に基づく投射残差法を採用する。
主な目的は、線形回帰モデルとニューラルネットワークモデルという文脈で機械学習タスクを実装することである。
実験により, この手法は, モデル再学習に近いデータ削除において, より徹底的な手法であることが確認された。
論文 参考訳(メタデータ) (2022-09-30T07:29:55Z) - Reminding the Incremental Language Model via Data-Free Self-Distillation [26.960750314663294]
擬似データによる増分学習は、ニューラルネットワークにおける破滅的な忘れを軽減できる。
データフリー自己蒸留(DFSD)を用いたインクリメンタル言語モデルを提案する。
我々のDFSDは、擬似データの最大減少率が90%であっても、従来の最先端手法を超えることができる。
論文 参考訳(メタデータ) (2021-10-17T07:27:43Z) - Variational Bayesian Unlearning [54.26984662139516]
本研究では, ベイズモデルの学習を, 消去する訓練データの小さな部分集合から, ほぼ非学習する問題について検討する。
消去されたデータから完全に学習されていないデータと、過去の信念を完全に忘れていないデータとをトレードオフする証拠を最小化するのと等価であることを示す。
VI を用いたモデルトレーニングでは、完全なデータから近似した(正確には)後続の信念しか得られず、未学習をさらに困難にしている。
論文 参考訳(メタデータ) (2020-10-24T11:53:00Z) - New Properties of the Data Distillation Method When Working With Tabular
Data [77.34726150561087]
データ蒸留は、必要な情報のみを保持しながら、トレーニングデータの量を減らす問題である。
蒸留した試料でトレーニングしたモデルは、元のデータセットでトレーニングしたモデルより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-19T20:27:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。