Stable Messenger: Steganography for Message-Concealed Image Generation
- URL: http://arxiv.org/abs/2312.01284v2
- Date: Sat, 10 Aug 2024 17:06:28 GMT
- Title: Stable Messenger: Steganography for Message-Concealed Image Generation
- Authors: Quang Nguyen, Truong Vu, Cuong Pham, Anh Tran, Khoi Nguyen,
- Abstract summary: We introduce message accuracy'', a novel metric evaluating the entirety of decoded messages for a more holistic evaluation.
We propose an adaptive universal loss tailored to enhance message accuracy, named Log-Sum-Exponential (LSE) loss.
We also introduce a new latent-aware encoding technique in our framework named Approach, harnessing pretrained Stable Diffusion for advanced steganographic image generation.
- Score: 6.310429296631073
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the ever-expanding digital landscape, safeguarding sensitive information remains paramount. This paper delves deep into digital protection, specifically focusing on steganography. While prior research predominantly fixated on individual bit decoding, we address this limitation by introducing ``message accuracy'', a novel metric evaluating the entirety of decoded messages for a more holistic evaluation. In addition, we propose an adaptive universal loss tailored to enhance message accuracy, named Log-Sum-Exponential (LSE) loss, thereby significantly improving the message accuracy of recent approaches. Furthermore, we also introduce a new latent-aware encoding technique in our framework named \Approach, harnessing pretrained Stable Diffusion for advanced steganographic image generation, giving rise to a better trade-off between image quality and message recovery. Throughout experimental results, we have demonstrated the superior performance of the new LSE loss and latent-aware encoding technique. This comprehensive approach marks a significant step in evolving evaluation metrics, refining loss functions, and innovating image concealment techniques, aiming for more robust and dependable information protection.
Related papers
- $ε$-VAE: Denoising as Visual Decoding [61.29255979767292]
In generative modeling, tokenization simplifies complex data into compact, structured representations, creating a more efficient, learnable space.
Current visual tokenization methods rely on a traditional autoencoder framework, where the encoder compresses data into latent representations, and the decoder reconstructs the original input.
We propose denoising as decoding, shifting from single-step reconstruction to iterative refinement. Specifically, we replace the decoder with a diffusion process that iteratively refines noise to recover the original image, guided by the latents provided by the encoder.
We evaluate our approach by assessing both reconstruction (rFID) and generation quality (
arXiv Detail & Related papers (2024-10-05T08:27:53Z) - DaLPSR: Leverage Degradation-Aligned Language Prompt for Real-World Image Super-Resolution [19.33582308829547]
This paper proposes to leverage degradation-aligned language prompt for accurate, fine-grained, and high-fidelity image restoration.
The proposed method achieves a new state-of-the-art perceptual quality level.
arXiv Detail & Related papers (2024-06-24T09:30:36Z) - Improving Text Generation on Images with Synthetic Captions [2.1175632266708733]
latent diffusion models such as SDXL and SD 1.5 have shown significant capability in generating realistic images.
We propose a low-cost approach by leveraging SDXL without any time-consuming training on large-scale datasets.
Our results demonstrate how our small scale fine-tuning approach can improve the accuracy of text generation in different scenarios.
arXiv Detail & Related papers (2024-06-01T17:27:34Z) - Neural Image Compression with Text-guided Encoding for both Pixel-level and Perceptual Fidelity [18.469136842357095]
We develop a new text-guided image compression algorithm that achieves both high perceptual and pixel-wise fidelity.
By doing so, we avoid decoding based on text-guided generative models.
Our method can achieve high pixel-level and perceptual quality, with either human- or machine-generated captions.
arXiv Detail & Related papers (2024-03-05T13:15:01Z) - Semantic Ensemble Loss and Latent Refinement for High-Fidelity Neural Image Compression [58.618625678054826]
This study presents an enhanced neural compression method designed for optimal visual fidelity.
We have trained our model with a sophisticated semantic ensemble loss, integrating Charbonnier loss, perceptual loss, style loss, and a non-binary adversarial loss.
Our empirical findings demonstrate that this approach significantly improves the statistical fidelity of neural image compression.
arXiv Detail & Related papers (2024-01-25T08:11:27Z) - SPIRE: Semantic Prompt-Driven Image Restoration [66.26165625929747]
We develop SPIRE, a Semantic and restoration Prompt-driven Image Restoration framework.
Our approach is the first framework that supports fine-level instruction through language-based quantitative specification of the restoration strength.
Our experiments demonstrate the superior restoration performance of SPIRE compared to the state of the arts.
arXiv Detail & Related papers (2023-12-18T17:02:30Z) - Towards Robust Image-in-Audio Deep Steganography [14.1081872409308]
This paper extends and enhances an existing image-in-audio deep steganography method by focusing on improving its robustness.
The proposed enhancements include modifications to the loss function, utilization of the Short-Time Fourier Transform (STFT), introduction of redundancy in the encoding process for error correction, and buffering of additional information in the pixel subconvolution operation.
arXiv Detail & Related papers (2023-03-09T03:16:04Z) - Dynamic Low-Resolution Distillation for Cost-Efficient End-to-End Text
Spotting [49.33891486324731]
We propose a novel cost-efficient Dynamic Low-resolution Distillation (DLD) text spotting framework.
It aims to infer images in different small but recognizable resolutions and achieve a better balance between accuracy and efficiency.
The proposed method can be optimized end-to-end and adopted in any current text spotting framework to improve the practicability.
arXiv Detail & Related papers (2022-07-14T06:49:59Z) - Towards Robust Blind Face Restoration with Codebook Lookup Transformer [94.48731935629066]
Blind face restoration is a highly ill-posed problem that often requires auxiliary guidance.
We show that a learned discrete codebook prior in a small proxy space cast blind face restoration as a code prediction task.
We propose a Transformer-based prediction network, named CodeFormer, to model global composition and context of the low-quality faces.
arXiv Detail & Related papers (2022-06-22T17:58:01Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.