Steganographic Embeddings as an Effective Data Augmentation
- URL: http://arxiv.org/abs/2502.15245v1
- Date: Fri, 21 Feb 2025 06:38:03 GMT
- Title: Steganographic Embeddings as an Effective Data Augmentation
- Authors: Nicholas DiSalvo,
- Abstract summary: Least Significant Bit (LSB) Steganography is a cryptographic technique that embeds secret information into an image.<n>LSB Steganography achieves this by replacing the k least significant bits of an image with the k most significant bits of a secret image.<n>We present experimental results on CIFAR-10 showing that LSB Steganography can significantly improve the training efficiency of deep neural networks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image Steganography is a cryptographic technique that embeds secret information into an image, ensuring the hidden data remains undetectable to the human eye while preserving the image's original visual integrity. Least Significant Bit (LSB) Steganography achieves this by replacing the k least significant bits of an image with the k most significant bits of a secret image, maintaining the appearance of the original image while simultaneously encoding the essential elements of the hidden data. In this work, we shift away from conventional applications of steganography in deep learning and explore its potential from a new angle. We present experimental results on CIFAR-10 showing that LSB Steganography, when used as a data augmentation strategy for downstream computer vision tasks such as image classification, can significantly improve the training efficiency of deep neural networks. It can also act as an implicit, uniformly discretized piecewise linear approximation of color augmentations such as (brightness, contrast, hue, and saturation), without introducing additional training overhead through a new joint image training regime that disregards the need for tuning sensitive augmentation hyperparameters.
Related papers
- Can Encrypted Images Still Train Neural Networks? Investigating Image Information and Random Vortex Transformation [51.475827684468875]
We establish a novel framework for measuring image information content to evaluate the variation in information content during image transformations.<n>We also propose a novel image encryption algorithm called Random Vortex Transformation.
arXiv Detail & Related papers (2024-11-25T09:14:53Z) - Natias: Neuron Attribution based Transferable Image Adversarial Steganography [62.906821876314275]
adversarial steganography has garnered considerable attention due to its ability to effectively deceive deep-learning-based steganalysis.
We propose a novel adversarial steganographic scheme named Natias.
Our proposed method can be seamlessly integrated with existing adversarial steganography frameworks.
arXiv Detail & Related papers (2024-09-08T04:09:51Z) - Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
We propose a complete framework to remove speckle in polarimetric SAR images using a convolutional neural network.
Experiments show that the proposed approach offers exceptional results in both speckle reduction and resolution preservation.
arXiv Detail & Related papers (2024-08-28T10:07:17Z) - Cover-separable Fixed Neural Network Steganography via Deep Generative Models [37.08937194546323]
We propose a Cover-separable Fixed Neural Network Steganography, namely Cs-FNNS.
In Cs-FNNS, we propose a Steganographic Perturbation Search (SPS) algorithm to directly encode the secret data into an imperceptible perturbation.
We demonstrate the superior performance of the proposed method in terms of visual quality and undetectability.
arXiv Detail & Related papers (2024-07-16T05:47:06Z) - Unrecognizable Yet Identifiable: Image Distortion with Preserved Embeddings [22.338328674283062]
We introduce an innovative image transformation technique that renders facial images unrecognizable to the eye while maintaining their identifiability by neural network models.
The proposed methodology can be used in various artificial intelligence applications to distort the visual data and keep the derived features close.
We show that it is possible to build the distortion that changes the image content by more than 70% while maintaining the same recognition accuracy.
arXiv Detail & Related papers (2024-01-26T18:20:53Z) - Human-imperceptible, Machine-recognizable Images [76.01951148048603]
A major conflict is exposed relating to software engineers between better developing AI systems and distancing from the sensitive training data.
This paper proposes an efficient privacy-preserving learning paradigm, where images are encrypted to become human-imperceptible, machine-recognizable''
We show that the proposed paradigm can ensure the encrypted images have become human-imperceptible while preserving machine-recognizable information.
arXiv Detail & Related papers (2023-06-06T13:41:37Z) - JPEG Steganalysis Based on Steganographic Feature Enhancement and Graph
Attention Learning [15.652077779677091]
We introduce a novel representation learning algorithm for JPEG steganalysis.
The graph attention learning module is designed to avoid global feature loss caused by the local feature learning of convolutional neural network.
The feature enhancement module is applied to prevent the stacking of convolutional layers from weakening the steganographic information.
arXiv Detail & Related papers (2023-02-05T01:42:19Z) - Image Steganography based on Style Transfer [12.756859984638961]
We propose image steganography network based on style transfer.
We embed secret information while transforming the content image style.
In latent space, the secret information is integrated into the latent representation of the cover image to generate the stego images.
arXiv Detail & Related papers (2022-03-09T02:58:29Z) - Homography augumented momentum constrastive learning for SAR image
retrieval [3.9743795764085545]
We propose a deep learning-based image retrieval approach using homography transformation augmented contrastive learning.
We also propose a training method for the DNNs induced by contrastive learning that does not require any labeling procedure.
arXiv Detail & Related papers (2021-09-21T17:27:07Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z) - Joint Deep Learning of Facial Expression Synthesis and Recognition [97.19528464266824]
We propose a novel joint deep learning of facial expression synthesis and recognition method for effective FER.
The proposed method involves a two-stage learning procedure. Firstly, a facial expression synthesis generative adversarial network (FESGAN) is pre-trained to generate facial images with different facial expressions.
In order to alleviate the problem of data bias between the real images and the synthetic images, we propose an intra-class loss with a novel real data-guided back-propagation (RDBP) algorithm.
arXiv Detail & Related papers (2020-02-06T10:56:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.