Enhancing and Adapting in the Clinic: Source-free Unsupervised Domain
Adaptation for Medical Image Enhancement
- URL: http://arxiv.org/abs/2312.01338v1
- Date: Sun, 3 Dec 2023 10:01:59 GMT
- Title: Enhancing and Adapting in the Clinic: Source-free Unsupervised Domain
Adaptation for Medical Image Enhancement
- Authors: Heng Li, Ziqin Lin, Zhongxi Qiu, Zinan Li, Huazhu Fu, Yan Hu, Jiang
Liu
- Abstract summary: We propose an algorithm for source-free unsupervised domain adaptive medical image enhancement (SAME)
A structure-preserving enhancement network is first constructed to learn a robust source model from synthesized training data.
A pseudo-label picker is developed to boost the knowledge distillation of enhancement tasks.
- Score: 34.11633495477596
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical imaging provides many valuable clues involving anatomical structure
and pathological characteristics. However, image degradation is a common issue
in clinical practice, which can adversely impact the observation and diagnosis
by physicians and algorithms. Although extensive enhancement models have been
developed, these models require a well pre-training before deployment, while
failing to take advantage of the potential value of inference data after
deployment. In this paper, we raise an algorithm for source-free unsupervised
domain adaptive medical image enhancement (SAME), which adapts and optimizes
enhancement models using test data in the inference phase. A
structure-preserving enhancement network is first constructed to learn a robust
source model from synthesized training data. Then a teacher-student model is
initialized with the source model and conducts source-free unsupervised domain
adaptation (SFUDA) by knowledge distillation with the test data. Additionally,
a pseudo-label picker is developed to boost the knowledge distillation of
enhancement tasks. Experiments were implemented on ten datasets from three
medical image modalities to validate the advantage of the proposed algorithm,
and setting analysis and ablation studies were also carried out to interpret
the effectiveness of SAME. The remarkable enhancement performance and benefits
for downstream tasks demonstrate the potential and generalizability of SAME.
The code is available at
https://github.com/liamheng/Annotation-free-Medical-Image-Enhancement.
Related papers
- LoRKD: Low-Rank Knowledge Decomposition for Medical Foundation Models [59.961172635689664]
"Knowledge Decomposition" aims to improve the performance on specific medical tasks.
We propose a novel framework named Low-Rank Knowledge Decomposition (LoRKD)
LoRKD explicitly separates gradients from different tasks by incorporating low-rank expert modules and efficient knowledge separation convolution.
arXiv Detail & Related papers (2024-09-29T03:56:21Z) - Unsupervised Feature Orthogonalization for Learning Distortion-Invariant Representations [0.13108652488669734]
This study introduces unORANIC+, a novel method that integrates unsupervised feature orthogonalization with the ability of a Vision Transformer.
The streamlined architecture of unORANIC+ effectively separates anatomical and image-specific attributes, resulting in robust and unbiased latent representations.
Extensive experimentation demonstrates unORANIC+'s reconstruction proficiency, corruption resilience, as well as capability to revise existing image distortions.
We confirm its adaptability to diverse datasets of varying image sources and sample sizes which positions the method as a promising algorithm for advanced medical image analysis.
arXiv Detail & Related papers (2024-09-18T19:25:38Z) - Distributed Federated Learning-Based Deep Learning Model for Privacy MRI Brain Tumor Detection [11.980634373191542]
Distributed training can facilitate the processing of large medical image datasets, and improve the accuracy and efficiency of disease diagnosis.
This paper presents an innovative approach to medical image classification, leveraging Federated Learning (FL) to address the dual challenges of data privacy and efficient disease diagnosis.
arXiv Detail & Related papers (2024-04-15T09:07:19Z) - Adaptive Affinity-Based Generalization For MRI Imaging Segmentation Across Resource-Limited Settings [1.5703963908242198]
This paper introduces a novel relation-based knowledge framework by seamlessly combining adaptive affinity-based and kernel-based distillation.
To validate our innovative approach, we conducted experiments on publicly available multi-source prostate MRI data.
arXiv Detail & Related papers (2024-04-03T13:35:51Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - Which Augmentation Should I Use? An Empirical Investigation of Augmentations for Self-Supervised Phonocardiogram Representation Learning [5.438725298163702]
Contrastive Self-Supervised Learning (SSL) offers a potential solution to labeled data scarcity.
We propose uncovering the optimal augmentations for applying contrastive learning in 1D phonocardiogram (PCG) classification.
We demonstrate that depending on its training distribution, the effectiveness of a fully-supervised model can degrade up to 32%, while SSL models only lose up to 10% or even improve in some cases.
arXiv Detail & Related papers (2023-12-01T11:06:00Z) - Interpretable Medical Image Classification using Prototype Learning and
Privileged Information [0.0]
Interpretability is often an essential requirement in medical imaging.
In this work, we investigate whether additional information available during the training process can be used to create an understandable and powerful model.
We propose an innovative solution called Proto-Caps that leverages the benefits of capsule networks, prototype learning and the use of privileged information.
arXiv Detail & Related papers (2023-10-24T11:28:59Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
We compare the impact of different training procedures for diabetic retinopathy grading.
We investigate different aspects such as quantitative performance, statistics of the learned feature representations, interpretability and robustness to image distortions.
Our results indicate that models from ImageNet pretraining report a significant increase in performance, generalization and robustness to image distortions.
arXiv Detail & Related papers (2021-06-25T08:32:45Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.