Unsupervised Feature Orthogonalization for Learning Distortion-Invariant Representations
- URL: http://arxiv.org/abs/2409.12276v1
- Date: Wed, 18 Sep 2024 19:25:38 GMT
- Title: Unsupervised Feature Orthogonalization for Learning Distortion-Invariant Representations
- Authors: Sebastian Doerrich, Francesco Di Salvo, Christian Ledig,
- Abstract summary: This study introduces unORANIC+, a novel method that integrates unsupervised feature orthogonalization with the ability of a Vision Transformer.
The streamlined architecture of unORANIC+ effectively separates anatomical and image-specific attributes, resulting in robust and unbiased latent representations.
Extensive experimentation demonstrates unORANIC+'s reconstruction proficiency, corruption resilience, as well as capability to revise existing image distortions.
We confirm its adaptability to diverse datasets of varying image sources and sample sizes which positions the method as a promising algorithm for advanced medical image analysis.
- Score: 0.13108652488669734
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study introduces unORANIC+, a novel method that integrates unsupervised feature orthogonalization with the ability of a Vision Transformer to capture both local and global relationships for improved robustness and generalizability. The streamlined architecture of unORANIC+ effectively separates anatomical and image-specific attributes, resulting in robust and unbiased latent representations that allow the model to demonstrate excellent performance across various medical image analysis tasks and diverse datasets. Extensive experimentation demonstrates unORANIC+'s reconstruction proficiency, corruption resilience, as well as capability to revise existing image distortions. Additionally, the model exhibits notable aptitude in downstream tasks such as disease classification and corruption detection. We confirm its adaptability to diverse datasets of varying image sources and sample sizes which positions the method as a promising algorithm for advanced medical image analysis, particularly in resource-constrained environments lacking large, tailored datasets. The source code is available at https://github.com/sdoerrich97/unoranic-plus .
Related papers
- Multiscale Latent Diffusion Model for Enhanced Feature Extraction from Medical Images [5.395912799904941]
variations in CT scanner models and acquisition protocols introduce significant variability in the extracted radiomic features.
LTDiff++ is a multiscale latent diffusion model designed to enhance feature extraction in medical imaging.
arXiv Detail & Related papers (2024-10-05T02:13:57Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - Enhancing and Adapting in the Clinic: Source-free Unsupervised Domain
Adaptation for Medical Image Enhancement [34.11633495477596]
We propose an algorithm for source-free unsupervised domain adaptive medical image enhancement (SAME)
A structure-preserving enhancement network is first constructed to learn a robust source model from synthesized training data.
A pseudo-label picker is developed to boost the knowledge distillation of enhancement tasks.
arXiv Detail & Related papers (2023-12-03T10:01:59Z) - Adaptive Input-image Normalization for Solving the Mode Collapse Problem in GAN-based X-ray Images [0.08192907805418582]
This work contributes an empirical demonstration of the benefits of integrating the adaptive input-image normalization with the Deep Conversaal GAN and Auxiliary GAN to alleviate the mode collapse problems.
Results demonstrate that the DCGAN and the ACGAN with adaptive input-image normalization outperform the DCGAN and ACGAN with un-normalized X-ray images.
arXiv Detail & Related papers (2023-09-21T16:43:29Z) - unORANIC: Unsupervised Orthogonalization of Anatomy and
Image-Characteristic Features [0.14732811715354455]
We introduce unORANIC, an unsupervised approach that uses an adapted loss function to drive the orthogonalization of anatomy and image-characteristic features.
During test time unORANIC is applied to potentially corrupted images to reconstruct corruption-free images, showing their domain-invariant anatomy only.
We confirm this qualitatively and quantitatively on 5 distinct datasets by assessing unORANIC's classification accuracy, corruption detection and revision capabilities.
Our approach shows promise for enhancing the generalizability and robustness of practical applications in medical image analysis.
arXiv Detail & Related papers (2023-08-29T13:37:13Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Improving Deep Facial Phenotyping for Ultra-rare Disorder Verification
Using Model Ensembles [52.77024349608834]
We analyze the influence of replacing a DCNN with a state-of-the-art face recognition approach, iResNet with ArcFace.
Our proposed ensemble model achieves state-of-the-art performance on both seen and unseen disorders.
arXiv Detail & Related papers (2022-11-12T23:28:54Z) - Multi-Disease Detection in Retinal Imaging based on Ensembling
Heterogeneous Deep Learning Models [0.0]
We propose an innovative multi-disease detection pipeline for retinal imaging.
Our pipeline includes state-of-the-art strategies like transfer learning, class weighting, real-time image augmentation and Focal loss utilization.
arXiv Detail & Related papers (2021-03-26T18:02:17Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.