Enhancing Algorithm Performance Understanding through tsMorph: Generating Semi-Synthetic Time Series for Robust Forecasting Evaluation
- URL: http://arxiv.org/abs/2312.01344v2
- Date: Tue, 22 Oct 2024 09:22:33 GMT
- Title: Enhancing Algorithm Performance Understanding through tsMorph: Generating Semi-Synthetic Time Series for Robust Forecasting Evaluation
- Authors: Moisés Santos, André de Carvalho, Carlos Soares,
- Abstract summary: We present tsMorph, a tool for generating semi-synthetic time series through dataset morphing.
In this paper, we show the benefits of tsMorph by assessing the predictive performance of the Long Short-Term Memory Network and DeepAR forecasting algorithms.
- Score: 0.393259574660092
- License:
- Abstract: Time series forecasting is a subject of significant scientific and industrial importance. Despite the widespread utilization of forecasting methods, there is a dearth of research aimed at comprehending the conditions under which these methods yield favorable or unfavorable performances. Empirical studies, although common, are challenged by the limited availability of time series datasets, restricting the extraction of reliable insights. To address this limitation, we present tsMorph, a tool for generating semi-synthetic time series through dataset morphing. tsMorph works by creating a sequence of datasets from two original datasets. The characteristics of the generated datasets progressively depart from those of one of the datasets and converge toward the attributes of the other dataset. This method provides a valuable alternative for obtaining substantial datasets. In this paper, we show the benefits of tsMorph by assessing the predictive performance of the Long Short-Term Memory Network and DeepAR forecasting algorithms. The time series used for the experiments comes from the NN5 Competition. The experimental results provide important insights. Notably, the performances of the two algorithms improve proportionally with the frequency of the time series. These experiments confirm that tsMorph can be an effective tool for better understanding the behavior of forecasting algorithms, delivering a pathway to overcoming the limitations posed by empirical studies and enabling more extensive and reliable experiments.
Related papers
- Optimal starting point for time series forecasting [1.9937737230710553]
We introduce a novel approach called Optimal Starting Point Time Series Forecast (OSP-TSP)
By adjusting the sequence length via leveraging the XGBoost and LightGBM models, the proposed approach can determine optimal starting point (OSP) of the time series.
Empirical results indicate that predictions based on the OSP-TSP approach consistently outperform those using the complete dataset.
arXiv Detail & Related papers (2024-09-25T11:51:00Z) - TSI-Bench: Benchmarking Time Series Imputation [52.27004336123575]
TSI-Bench is a comprehensive benchmark suite for time series imputation utilizing deep learning techniques.
The TSI-Bench pipeline standardizes experimental settings to enable fair evaluation of imputation algorithms.
TSI-Bench innovatively provides a systematic paradigm to tailor time series forecasting algorithms for imputation purposes.
arXiv Detail & Related papers (2024-06-18T16:07:33Z) - State Sequences Prediction via Fourier Transform for Representation
Learning [111.82376793413746]
We propose State Sequences Prediction via Fourier Transform (SPF), a novel method for learning expressive representations efficiently.
We theoretically analyze the existence of structural information in state sequences, which is closely related to policy performance and signal regularity.
Experiments demonstrate that the proposed method outperforms several state-of-the-art algorithms in terms of both sample efficiency and performance.
arXiv Detail & Related papers (2023-10-24T14:47:02Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
We introduce three large-scale time series forecasting datasets from the cloud operations domain.
We show it is a strong zero-shot baseline and benefits from further scaling, both in model and dataset size.
Accompanying these datasets and results is a suite of comprehensive benchmark results comparing classical and deep learning baselines to our pre-trained method.
arXiv Detail & Related papers (2023-10-08T08:09:51Z) - MPR-Net:Multi-Scale Pattern Reproduction Guided Universality Time Series
Interpretable Forecasting [13.790498420659636]
Time series forecasting has received wide interest from existing research due to its broad applications inherent challenging.
This paper proposes a forecasting model, MPR-Net. It first adaptively decomposes multi-scale historical series patterns using convolution operation, then constructs a pattern extension forecasting method based on the prior knowledge of pattern reproduction, and finally reconstructs future patterns into future series using deconvolution operation.
By leveraging the temporal dependencies present in the time series, MPR-Net not only achieves linear time complexity, but also makes the forecasting process interpretable.
arXiv Detail & Related papers (2023-07-13T13:16:01Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - Optimal Latent Space Forecasting for Large Collections of Short Time
Series Using Temporal Matrix Factorization [0.0]
It is a common practice to evaluate multiple methods and choose one of these methods or an ensemble for producing the best forecasts.
We propose a framework for forecasting short high-dimensional time series data by combining low-rank temporal matrix factorization and optimal model selection on latent time series.
arXiv Detail & Related papers (2021-12-15T11:39:21Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Time Series is a Special Sequence: Forecasting with Sample Convolution
and Interaction [9.449017120452675]
Time series is a special type of sequence data, a set of observations collected at even intervals of time and ordered chronologically.
Existing deep learning techniques use generic sequence models for time series analysis, which ignore some of its unique properties.
We propose a novel neural network architecture and apply it for the time series forecasting problem, wherein we conduct sample convolution and interaction at multiple resolutions for temporal modeling.
arXiv Detail & Related papers (2021-06-17T08:15:04Z) - Towards Synthetic Multivariate Time Series Generation for Flare
Forecasting [5.098461305284216]
One of the limiting factors in training data-driven, rare-event prediction algorithms is the scarcity of the events of interest.
In this study, we explore the usefulness of the conditional generative adversarial network (CGAN) as a means to perform data-informed oversampling.
arXiv Detail & Related papers (2021-05-16T22:23:23Z) - Learning summary features of time series for likelihood free inference [93.08098361687722]
We present a data-driven strategy for automatically learning summary features from time series data.
Our results indicate that learning summary features from data can compete and even outperform LFI methods based on hand-crafted values.
arXiv Detail & Related papers (2020-12-04T19:21:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.