Towards an accurate and generalizable multiple sclerosis lesion
segmentation model using self-ensembled lesion fusion
- URL: http://arxiv.org/abs/2312.01460v1
- Date: Sun, 3 Dec 2023 17:08:10 GMT
- Title: Towards an accurate and generalizable multiple sclerosis lesion
segmentation model using self-ensembled lesion fusion
- Authors: Jinwei Zhang, Lianrui Zuo, Blake E. Dewey, Samuel W. Remedios, Dzung
L. Pham, Aaron Carass and Jerry L. Prince
- Abstract summary: We developed an accurate and generalizable MS lesion segmentation model using the well-known U-Net architecture without further modification.
A novel test-time self-ensembled lesion fusion strategy is proposed that not only achieved the best performance but also demonstrated robustness across various self-ensemble parameter choices.
- Score: 4.024932070294212
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic multiple sclerosis (MS) lesion segmentation using multi-contrast
magnetic resonance (MR) images provides improved efficiency and reproducibility
compared to manual delineation. Current state-of-the-art automatic MS lesion
segmentation methods utilize modified U-Net-like architectures. However, in the
literature, dedicated architecture modifications were always required to
maximize their performance. In addition, the best-performing methods have not
proven to be generalizable to diverse test datasets with contrast variations
and image artifacts. In this work, we developed an accurate and generalizable
MS lesion segmentation model using the well-known U-Net architecture without
further modification. A novel test-time self-ensembled lesion fusion strategy
is proposed that not only achieved the best performance using the ISBI 2015 MS
segmentation challenge data but also demonstrated robustness across various
self-ensemble parameter choices. Moreover, equipped with instance normalization
rather than batch normalization widely used in literature, the model trained on
the ISBI challenge data generalized well on clinical test datasets from
different scanners.
Related papers
- Toward Generalizable Multiple Sclerosis Lesion Segmentation Models [0.0]
This study aims to develop models that generalize across diverse evaluation datasets.
We used all high-quality publicly-available MS lesion segmentation datasets on which we systematically trained a state-of-the-art UNet++ architecture.
arXiv Detail & Related papers (2024-10-25T15:21:54Z) - Brain Stroke Segmentation Using Deep Learning Models: A Comparative Study [1.4651272514940197]
Stroke segmentation plays a crucial role in the diagnosis and treatment of stroke patients.
Deep models have been introduced for general medical image segmentation.
In this study, we selected four types of deep models that were recently proposed and evaluated their performance for stroke segmentation.
arXiv Detail & Related papers (2024-03-25T20:44:01Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Data Augmentation-Based Unsupervised Domain Adaptation In Medical
Imaging [0.709016563801433]
We propose an unsupervised method for robust domain adaptation in brain MRI segmentation by leveraging MRI-specific augmentation techniques.
The results show that our proposed approach achieves high accuracy, exhibits broad applicability, and showcases remarkable robustness against domain shift in various tasks.
arXiv Detail & Related papers (2023-08-08T17:00:11Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - FAST-AID Brain: Fast and Accurate Segmentation Tool using Artificial
Intelligence Developed for Brain [0.8376091455761259]
A novel deep learning method is proposed for fast and accurate segmentation of the human brain into 132 regions.
The proposed model uses an efficient U-Net-like network and benefits from the intersection points of different views and hierarchical relations.
The proposed method can be applied to brain MRI data including skull or any other artifacts without preprocessing the images or a drop in performance.
arXiv Detail & Related papers (2022-08-30T16:06:07Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z) - Cross-Domain Segmentation with Adversarial Loss and Covariate Shift for
Biomedical Imaging [2.1204495827342438]
This manuscript aims to implement a novel model that can learn robust representations from cross-domain data by encapsulating distinct and shared patterns from different modalities.
The tests on CT and MRI liver data acquired in routine clinical trials show that the proposed model outperforms all other baseline with a large margin.
arXiv Detail & Related papers (2020-06-08T07:35:55Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
We propose a novel multi-site network (MS-Net) for improving prostate segmentation by learning robust representations.
Our MS-Net improves the performance across all datasets consistently, and outperforms state-of-the-art methods for multi-site learning.
arXiv Detail & Related papers (2020-02-09T14:11:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.