Toward Generalizable Multiple Sclerosis Lesion Segmentation Models
- URL: http://arxiv.org/abs/2410.19623v1
- Date: Fri, 25 Oct 2024 15:21:54 GMT
- Title: Toward Generalizable Multiple Sclerosis Lesion Segmentation Models
- Authors: Liviu Badea, Maria Popa,
- Abstract summary: This study aims to develop models that generalize across diverse evaluation datasets.
We used all high-quality publicly-available MS lesion segmentation datasets on which we systematically trained a state-of-the-art UNet++ architecture.
- Score: 0.0
- License:
- Abstract: Automating Multiple Sclerosis (MS) lesion segmentation would be of great benefit in initial diagnosis as well as monitoring disease progression. Deep learning based segmentation models perform well in many domains, but the state-of-the-art in MS lesion segmentation is still suboptimal. Complementary to previous MS lesion segmentation challenges which focused on optimizing the performance on a single evaluation dataset, this study aims to develop models that generalize across diverse evaluation datasets, mirroring real-world clinical scenarios that involve varied scanners, settings, and patient cohorts. To this end, we used all high-quality publicly-available MS lesion segmentation datasets on which we systematically trained a state-of-the-art UNet++ architecture. The resulting models demonstrate consistent performance across the remaining test datasets (are generalizable), with larger and more heterogeneous datasets leading to better models. To the best of our knowledge, this represents the most comprehensive cross-dataset evaluation of MS lesion segmentation models to date using publicly available datasets. Additionally, explicitly enhancing dataset size by merging datasets improved model performance. Specifically, a model trained on the combined MSSEG2016-train, ISBI2015, and 3D-MR-MS datasets surpasses the winner of the MICCAI-2016 competition. Moreover, we demonstrate that the generalizability of our models also relies on our original use of quantile normalization on MRI intensities.
Related papers
- Weakly supervised deep learning model with size constraint for prostate cancer detection in multiparametric MRI and generalization to unseen domains [0.90668179713299]
We show that the model achieves on-par performance with strong fully supervised baseline models.
We also observe a performance decrease for both fully supervised and weakly supervised models when tested on unseen data domains.
arXiv Detail & Related papers (2024-11-04T12:24:33Z) - SegHeD: Segmentation of Heterogeneous Data for Multiple Sclerosis Lesions with Anatomical Constraints [1.498084483844508]
Machine learning models have demonstrated a great potential for automated MS lesion segmentation.
SegHeD is a novel multi-dataset multi-task segmentation model that can incorporate heterogeneous data as input.
SegHeD is assessed on five MS datasets and achieves a high performance in all, new, and vanishing-lesion segmentation.
arXiv Detail & Related papers (2024-10-02T17:21:43Z) - Multi-OCT-SelfNet: Integrating Self-Supervised Learning with Multi-Source Data Fusion for Enhanced Multi-Class Retinal Disease Classification [2.5091334993691206]
Development of a robust deep-learning model for retinal disease diagnosis requires a substantial dataset for training.
The capacity to generalize effectively on smaller datasets remains a persistent challenge.
We've combined a wide range of data sources to improve performance and generalization to new data.
arXiv Detail & Related papers (2024-09-17T17:22:35Z) - Towards an accurate and generalizable multiple sclerosis lesion
segmentation model using self-ensembled lesion fusion [4.024932070294212]
We developed an accurate and generalizable MS lesion segmentation model using the well-known U-Net architecture without further modification.
A novel test-time self-ensembled lesion fusion strategy is proposed that not only achieved the best performance but also demonstrated robustness across various self-ensemble parameter choices.
arXiv Detail & Related papers (2023-12-03T17:08:10Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - MSeg: A Composite Dataset for Multi-domain Semantic Segmentation [100.17755160696939]
We present MSeg, a composite dataset that unifies semantic segmentation datasets from different domains.
We reconcile the generalization and bring the pixel-level annotations into alignment by relabeling more than 220,000 object masks in more than 80,000 images.
A model trained on MSeg ranks first on the WildDash-v1 leaderboard for robust semantic segmentation, with no exposure to WildDash data during training.
arXiv Detail & Related papers (2021-12-27T16:16:35Z) - Cohort Bias Adaptation in Aggregated Datasets for Lesion Segmentation [0.8466401378239363]
We propose a generalized affine conditioning framework to learn and account for cohort biases across multi-source datasets.
We show that our cohort bias adaptation method improves performance of the network on pooled datasets.
arXiv Detail & Related papers (2021-08-02T08:32:57Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
We propose an FMR model that finds sample clusters and jointly models multiple incomplete mixed-type targets simultaneously.
We provide non-asymptotic oracle performance bounds for our model under a high-dimensional learning framework.
The results show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2020-10-12T03:27:07Z) - Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to
Unseen Domains [68.73614619875814]
We present a novel shape-aware meta-learning scheme to improve the model generalization in prostate MRI segmentation.
Experimental results show that our approach outperforms many state-of-the-art generalization methods consistently across all six settings of unseen domains.
arXiv Detail & Related papers (2020-07-04T07:56:02Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.