CT Reconstruction using Diffusion Posterior Sampling conditioned on a Nonlinear Measurement Model
- URL: http://arxiv.org/abs/2312.01464v2
- Date: Tue, 11 Jun 2024 10:51:21 GMT
- Title: CT Reconstruction using Diffusion Posterior Sampling conditioned on a Nonlinear Measurement Model
- Authors: Shudong Li, Xiao Jiang, Matthew Tivnan, Grace J. Gang, Yuan Shen, J. Webster Stayman,
- Abstract summary: Diffusion posterior sampling has been used to produce high quality CT images given low-quality measurements.
Current methods rely on a linear model of x-ray CT physics to reconstruct or restore images.
We propose a new method that solves the inverse problem of nonlinear CT image reconstruction via diffusion posterior sampling.
- Score: 17.26789842018146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have been demonstrated as powerful deep learning tools for image generation in CT reconstruction and restoration. Recently, diffusion posterior sampling, where a score-based diffusion prior is combined with a likelihood model, has been used to produce high quality CT images given low-quality measurements. This technique is attractive since it permits a one-time, unsupervised training of a CT prior; which can then be incorporated with an arbitrary data model. However, current methods rely on a linear model of x-ray CT physics to reconstruct or restore images. While it is common to linearize the transmission tomography reconstruction problem, this is an approximation to the true and inherently nonlinear forward model. We propose a new method that solves the inverse problem of nonlinear CT image reconstruction via diffusion posterior sampling. We implement a traditional unconditional diffusion model by training a prior score function estimator, and apply Bayes rule to combine this prior with a measurement likelihood score function derived from the nonlinear physical model to arrive at a posterior score function that can be used to sample the reverse-time diffusion process. This plug-and-play method allows incorporation of a diffusion-based prior with generalized nonlinear CT image reconstruction into multiple CT system designs with different forward models, without the need for any additional training. We develop the algorithm that performs this reconstruction, including an ordered-subsets variant for accelerated processing and demonstrate the technique in both fully sampled low dose data and sparse-view geometries using a single unsupervised training of the prior.
Related papers
- CT-SDM: A Sampling Diffusion Model for Sparse-View CT Reconstruction across All Sampling Rates [16.985836345715963]
Sparse views X-ray computed tomography has emerged as a contemporary technique to mitigate radiation dose degradation.
Recent studies utilizing deep learning methods has made promising progress in removing artifacts for Sparse-View Computed Tomography (SVCT)
Our study proposes a adaptive reconstruction method to achieve high-performance SVCT reconstruction at any sampling rate.
arXiv Detail & Related papers (2024-09-03T03:06:15Z) - Iterative CT Reconstruction via Latent Variable Optimization of Shallow Diffusion Models [1.4019041243188557]
We propose a novel computed tomography (CT) reconstruction method by combining the denoising diffusion probabilistic model with iterative CT reconstruction.
We demonstrated the effectiveness of the proposed method through the sparse-projection CT reconstruction of 1/10 projection data.
arXiv Detail & Related papers (2024-08-06T12:55:17Z) - Diffeomorphic Template Registration for Atmospheric Turbulence Mitigation [50.16004183320537]
We describe a method for recovering the irradiance underlying a collection of images corrupted by atmospheric turbulence.
We select one of the images as a reference, and model the deformation in this image by the aggregation of the optical flow from it to other images.
We achieve state-of-the-art performance despite its simplicity.
arXiv Detail & Related papers (2024-05-06T17:39:53Z) - Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
Diffusion model-based image restoration (IR) aims to use diffusion models to recover high-quality (HQ) images from degraded images, achieving promising performance.
Most existing methods need long serial sampling chains to restore HQ images step-by-step, resulting in expensive sampling time and high computation costs.
In this work, we aim to rethink the diffusion model-based IR models through a different perspective, i.e., a deep equilibrium (DEQ) fixed point system, called DeqIR.
arXiv Detail & Related papers (2023-11-20T08:27:56Z) - Enhancing Low-dose CT Image Reconstruction by Integrating Supervised and
Unsupervised Learning [13.17680480211064]
We propose a hybrid supervised-unsupervised learning framework for X-ray computed tomography (CT) image reconstruction.
Each proposed trained block consists of a deterministic MBIR solver and a neural network.
We demonstrate the efficacy of this learned hybrid model for low-dose CT image reconstruction with limited training data.
arXiv Detail & Related papers (2023-11-19T20:23:59Z) - Gradient Descent Provably Solves Nonlinear Tomographic Reconstruction [60.95625458395291]
In computed tomography (CT) the forward model consists of a linear transform followed by an exponential nonlinearity based on the attenuation of light according to the Beer-Lambert Law.
We show that this approach reduces metal artifacts compared to a commercial reconstruction of a human skull with metal crowns.
arXiv Detail & Related papers (2023-10-06T00:47:57Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
We present a learning method to optimize sub-sampling patterns for compressed sensing multi-coil MRI.
We use a single-step reconstruction based on the posterior mean estimate given by the diffusion model and the MRI measurement process.
Our method requires as few as five training images to learn effective sampling patterns.
arXiv Detail & Related papers (2023-06-05T22:09:06Z) - Generative Modeling in Sinogram Domain for Sparse-view CT Reconstruction [12.932897771104825]
radiation dose in computed tomography (CT) examinations can be significantly reduced by intuitively decreasing the number of projection views.
Previous deep learning techniques with sparse-view data require sparse-view/full-view CT image pairs to train the network with supervised manners.
We present a fully unsupervised score-based generative model in sinogram domain for sparse-view CT reconstruction.
arXiv Detail & Related papers (2022-11-25T06:49:18Z) - PatchNR: Learning from Small Data by Patch Normalizing Flow
Regularization [57.37911115888587]
We introduce a regularizer for the variational modeling of inverse problems in imaging based on normalizing flows.
Our regularizer, called patchNR, involves a normalizing flow learned on patches of very few images.
arXiv Detail & Related papers (2022-05-24T12:14:26Z) - Iterative Reconstruction for Low-Dose CT using Deep Gradient Priors of
Generative Model [24.024765099719886]
Iterative reconstruction is one of the most promising ways to compensate for the increased noise due to reduction of photon flux.
In this work we integrate the data-consistency as a conditional term into the iterative generative model for low-dose CT.
The distance between the reconstructed image and the manifold is minimized along with data fidelity during reconstruction.
arXiv Detail & Related papers (2020-09-27T06:36:39Z) - Data Consistent CT Reconstruction from Insufficient Data with Learned
Prior Images [70.13735569016752]
We investigate the robustness of deep learning in CT image reconstruction by showing false negative and false positive lesion cases.
We propose a data consistent reconstruction (DCR) method to improve their image quality, which combines the advantages of compressed sensing and deep learning.
The efficacy of the proposed method is demonstrated in cone-beam CT with truncated data, limited-angle data and sparse-view data, respectively.
arXiv Detail & Related papers (2020-05-20T13:30:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.