Normed Spaces for Graph Embedding
- URL: http://arxiv.org/abs/2312.01502v1
- Date: Sun, 3 Dec 2023 20:21:08 GMT
- Title: Normed Spaces for Graph Embedding
- Authors: Diaaeldin Taha, Wei Zhao, J. Maxwell Riestenberg, Michael Strube
- Abstract summary: We show that normed spaces can embed finite metric spaces with surprisingly low theoretical bounds on distortion in low dimensions.
Our work highlights the potential of normed spaces for geometric graph representation learning, raises new research questions, and offers a valuable tool for experimental mathematics in the field of finite metric space embeddings.
- Score: 8.949780057954404
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Theoretical results from discrete geometry suggest that normed spaces can
abstractly embed finite metric spaces with surprisingly low theoretical bounds
on distortion in low dimensions. In this paper, inspired by this theoretical
insight, we highlight normed spaces as a more flexible and computationally
efficient alternative to several popular Riemannian manifolds for learning
graph embeddings. Normed space embeddings significantly outperform several
popular manifolds on a large range of synthetic and real-world graph
reconstruction benchmark datasets while requiring significantly fewer
computational resources. We also empirically verify the superiority of normed
space embeddings on growing families of graphs associated with negative, zero,
and positive curvature, further reinforcing the flexibility of normed spaces in
capturing diverse graph structures as graph sizes increase. Lastly, we
demonstrate the utility of normed space embeddings on two applied graph
embedding tasks, namely, link prediction and recommender systems. Our work
highlights the potential of normed spaces for geometric graph representation
learning, raises new research questions, and offers a valuable tool for
experimental mathematics in the field of finite metric space embeddings. We
make our code and data publically available.
Related papers
- Weighted Embeddings for Low-Dimensional Graph Representation [0.13499500088995461]
We propose embedding a graph into a weighted space, which is closely related to hyperbolic geometry but mathematically simpler.
We show that our weighted embeddings heavily outperform state-of-the-art Euclidean embeddings for heterogeneous graphs while using fewer dimensions.
arXiv Detail & Related papers (2024-10-08T13:41:03Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
This paper proposes a novel Deep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE) for attributed graph data.
The proposed method surpasses state-of-the-art baseline algorithms by a significant margin on different downstream tasks across popular datasets.
arXiv Detail & Related papers (2024-01-12T17:57:07Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
The reliability of graph embeddings depends on how much the geometry of the continuous space matches the graph structure.
We introduce a new class of manifold, named soft manifold, that can solve this situation.
Using soft manifold for graph embedding, we can provide continuous spaces to pursue any task in data analysis over complex datasets.
arXiv Detail & Related papers (2023-11-29T12:48:33Z) - AMES: A Differentiable Embedding Space Selection Framework for Latent
Graph Inference [6.115315198322837]
We introduce the Attentional Multi-Embedding Selection (AMES) framework, a differentiable method for selecting the best embedding space for latent graph inference.
Our framework consistently achieves comparable or superior results compared to previous methods for latent graph inference.
arXiv Detail & Related papers (2023-11-20T16:24:23Z) - Tight and fast generalization error bound of graph embedding in metric
space [54.279425319381374]
We show that graph embedding in non-Euclidean metric space can outperform that in Euclidean space with much smaller training data than the existing bound has suggested.
Our new upper bound is significantly tighter and faster than the existing one, which can be exponential to $R$ and $O(frac1S)$ at the fastest.
arXiv Detail & Related papers (2023-05-13T17:29:18Z) - Contrastive Graph Clustering in Curvature Spaces [74.03252813800334]
We present a novel end-to-end contrastive graph clustering model named CONGREGATE.
To support geometric clustering, we construct a theoretically grounded Heterogeneous Curvature Space.
We then train the graph clusters by an augmentation-free reweighted contrastive approach.
arXiv Detail & Related papers (2023-05-05T14:04:52Z) - Geometric Graph Representation Learning via Maximizing Rate Reduction [73.6044873825311]
Learning node representations benefits various downstream tasks in graph analysis such as community detection and node classification.
We propose Geometric Graph Representation Learning (G2R) to learn node representations in an unsupervised manner.
G2R maps nodes in distinct groups into different subspaces, while each subspace is compact and different subspaces are dispersed.
arXiv Detail & Related papers (2022-02-13T07:46:24Z) - A Self-supervised Mixed-curvature Graph Neural Network [76.3790248465522]
We present a novel Self-supervised Mixed-curvature Graph Neural Network (SelfMGNN)
We show that SelfMGNN captures the complicated graph structures in reality and outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2021-12-10T08:56:55Z) - Directed Graph Embeddings in Pseudo-Riemannian Manifolds [0.0]
We show that general directed graphs can be effectively represented by an embedding model that combines three components.
We demonstrate the representational capabilities of this method by applying it to the task of link prediction.
arXiv Detail & Related papers (2021-06-16T10:31:37Z) - Computationally Tractable Riemannian Manifolds for Graph Embeddings [10.420394952839242]
We show how to learn and optimize graph embeddings in certain curved Riemannian spaces.
Our results serve as new evidence for the benefits of non-Euclidean embeddings in machine learning pipelines.
arXiv Detail & Related papers (2020-02-20T10:55:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.