論文の概要: Super-resolution Reconstruction of Single Image for Latent features
- arxiv url: http://arxiv.org/abs/2211.12845v3
- Date: Thu, 9 Nov 2023 14:11:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-10 19:00:35.767365
- Title: Super-resolution Reconstruction of Single Image for Latent features
- Title(参考訳): 遅発性特徴に対する単一画像の超解像再構成
- Authors: Xin Wang, Jing-Ke Yan, Jing-Ye Cai, Jian-Hua Deng, Qin Qin, Yao Cheng
- Abstract要約: 単一像超解像(SISR)は、通常、様々な劣化した低分解能(LR)画像を単一の高分解能(HR)画像に復元することに焦点を当てる。
モデルが細部やテクスチャの多様性を保ちながら、高品質かつ迅速なサンプリングを同時に維持することは、しばしば困難である。
この課題は、モデル崩壊、再構成されたHR画像におけるリッチディテールとテクスチャの特徴の欠如、モデルサンプリングの過剰な時間消費などの問題を引き起こす可能性がある。
- 参考スコア(独自算出の注目度): 8.857209365343646
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Single-image super-resolution (SISR) typically focuses on restoring various
degraded low-resolution (LR) images to a single high-resolution (HR) image.
However, during SISR tasks, it is often challenging for models to
simultaneously maintain high quality and rapid sampling while preserving
diversity in details and texture features. This challenge can lead to issues
such as model collapse, lack of rich details and texture features in the
reconstructed HR images, and excessive time consumption for model sampling. To
address these problems, this paper proposes a Latent Feature-oriented Diffusion
Probability Model (LDDPM). First, we designed a conditional encoder capable of
effectively encoding LR images, reducing the solution space for model image
reconstruction and thereby improving the quality of the reconstructed images.
We then employed a normalized flow and multimodal adversarial training,
learning from complex multimodal distributions, to model the denoising
distribution. Doing so boosts the generative modeling capabilities within a
minimal number of sampling steps. Experimental comparisons of our proposed
model with existing SISR methods on mainstream datasets demonstrate that our
model reconstructs more realistic HR images and achieves better performance on
multiple evaluation metrics, providing a fresh perspective for tackling SISR
tasks.
- Abstract(参考訳): 単一像超解像(SISR)は、通常、様々な劣化した低分解能(LR)画像を単一の高分解能(HR)画像に復元することに焦点を当てる。
しかし、SISRタスクの間、モデルが細部やテクスチャの多様性を保ちながら高品質かつ迅速なサンプリングを同時に維持することはしばしば困難である。
この課題は、モデル崩壊、再構成されたHR画像における豊富な詳細とテクスチャの欠如、モデルサンプリングの過剰な時間消費などの問題を引き起こす可能性がある。
これらの問題に対処するため,本稿では遅延特徴指向拡散確率モデル(LDDPM)を提案する。
まず、LR画像を効果的に符号化し、モデル画像再構成のための解空間を小さくし、再構成画像の品質を向上させる条件エンコーダを設計した。
次に,複雑なマルチモーダル分布から学習し,正規化フローとマルチモーダル逆学習を行い,分母分布をモデル化した。
これにより、最小限のサンプリングステップで生成モデリング能力が向上する。
提案モデルと既存のSISR法との比較実験により,本モデルがより現実的なHR画像を再構成し,複数の評価指標の性能向上を実現し,SISRタスクの新たな視点を提供することを示す。
関連論文リスト
- Degradation-Guided One-Step Image Super-Resolution with Diffusion Priors [75.24313405671433]
拡散に基づく画像超解像法 (SR) は、事前訓練された大規模なテキスト・画像拡散モデルを先行として活用することにより、顕著な成功を収めた。
本稿では,拡散型SR手法の効率問題に対処する新しい一段階SRモデルを提案する。
既存の微調整戦略とは異なり、SR専用の劣化誘導低ランク適応 (LoRA) モジュールを設計した。
論文 参考訳(メタデータ) (2024-09-25T16:15:21Z) - Photo-Realistic Image Restoration in the Wild with Controlled Vision-Language Models [14.25759541950917]
この研究は、能動的視覚言語モデルと合成分解パイプラインを活用して、野生(ワイルドIR)における画像復元を学習する。
我々の基底拡散モデルは画像復元SDE(IR-SDE)である。
論文 参考訳(メタデータ) (2024-04-15T12:34:21Z) - Boosting Flow-based Generative Super-Resolution Models via Learned Prior [8.557017814978334]
フローベース超解像(SR)モデルは、高品質な画像を生成する際に驚くべき能力を示した。
これらの手法は、グリッドアーティファクト、爆発する逆数、固定サンプリング温度による最適以下の結果など、画像生成中にいくつかの課題に遭遇する。
本研究では、フローベースSRモデルの推論フェーズ前に学習した条件を導入する。
論文 参考訳(メタデータ) (2024-03-16T18:04:12Z) - Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
拡散モデルに基づく画像復元(IR)は、拡散モデルを用いて劣化した画像から高品質な(本社)画像を復元し、有望な性能を達成することを目的としている。
既存のほとんどの手法では、HQイメージをステップバイステップで復元するために長いシリアルサンプリングチェーンが必要であるため、高価なサンプリング時間と高い計算コストがかかる。
本研究では,拡散モデルに基づくIRモデルを異なる視点,すなわちDeqIRと呼ばれるDeQ(Deep equilibrium)固定点系で再考することを目的とする。
論文 参考訳(メタデータ) (2023-11-20T08:27:56Z) - Efficient Test-Time Adaptation for Super-Resolution with Second-Order
Degradation and Reconstruction [62.955327005837475]
画像超解像(SR)は,低分解能(LR)から高分解能(HR)へのマッピングを,一対のHR-LRトレーニング画像を用いて学習することを目的としている。
SRTTAと呼ばれるSRの効率的なテスト時間適応フレームワークを提案し、SRモデルを異なる/未知の劣化型でテストドメインに迅速に適応させることができる。
論文 参考訳(メタデータ) (2023-10-29T13:58:57Z) - Single Image Internal Distribution Measurement Using Non-Local
Variational Autoencoder [11.985083962982909]
本稿では,非局所変分オートエンコーダ(textttNLVAE)という画像固有解を提案する。
textttNLVAEは,非局所領域からの非絡み合った情報を用いて高解像度画像を再構成する自己教師型戦略として導入された。
7つのベンチマークデータセットによる実験結果から,textttNLVAEモデルの有効性が示された。
論文 参考訳(メタデータ) (2022-04-02T18:43:55Z) - Hierarchical Conditional Flow: A Unified Framework for Image
Super-Resolution and Image Rescaling [139.25215100378284]
画像SRと画像再スケーリングのための統合フレームワークとして階層的条件フロー(HCFlow)を提案する。
HCFlowは、LR画像と残りの高周波成分の分布を同時にモデル化することにより、HRとLR画像ペア間のマッピングを学習する。
さらに性能を高めるために、知覚的損失やGAN損失などの他の損失と、トレーニングで一般的に使用される負の対数類似損失とを組み合わせる。
論文 参考訳(メタデータ) (2021-08-11T16:11:01Z) - SRDiff: Single Image Super-Resolution with Diffusion Probabilistic
Models [19.17571465274627]
単一の画像スーパーリゾリューション(SISR)は、与えられた低リゾリューション(LR)画像から高解像度(HR)画像を再構成することを目的とする。
新規な単像超解像拡散確率モデル(SRDiff)を提案する。
SRDiffはデータ可能性の変動境界の変種に最適化されており、多様で現実的なSR予測を提供することができる。
論文 参考訳(メタデータ) (2021-04-30T12:31:25Z) - Invertible Image Rescaling [118.2653765756915]
Invertible Rescaling Net (IRN) を開発した。
我々は、ダウンスケーリングプロセスにおいて、指定された分布に従う潜在変数を用いて、失われた情報の分布をキャプチャする。
論文 参考訳(メタデータ) (2020-05-12T09:55:53Z) - Characteristic Regularisation for Super-Resolving Face Images [81.84939112201377]
既存の顔画像超解像法(SR)は、主に人工的にダウンサンプリングされた低解像度(LR)画像の改善に焦点を当てている。
従来の非教師なしドメイン適応(UDA)手法は、未ペアの真のLRとHRデータを用いてモデルをトレーニングすることでこの問題に対処する。
これにより、視覚的特徴を構成することと、画像の解像度を高めることの2つのタスクで、モデルをオーバーストレッチする。
従来のSRモデルとUDAモデルの利点を結合する手法を定式化する。
論文 参考訳(メタデータ) (2019-12-30T16:27:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。