ResEnsemble-DDPM: Residual Denoising Diffusion Probabilistic Models for
Ensemble Learning
- URL: http://arxiv.org/abs/2312.01682v1
- Date: Mon, 4 Dec 2023 07:14:20 GMT
- Title: ResEnsemble-DDPM: Residual Denoising Diffusion Probabilistic Models for
Ensemble Learning
- Authors: Shi Zhenning, Dong Changsheng, Xie Xueshuo, Pan Bin, He Along, Li Tao
- Abstract summary: We propose ResEnsemble-DDPM, which seamlessly integrates the diffusion model and the end-to-end model through ensemble learning.
Experimental results demonstrate that our ResEnsemble-DDPM can further improve the capabilities of existing models.
- Score: 3.2564047163418754
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nowadays, denoising diffusion probabilistic models have been adapted for many
image segmentation tasks. However, existing end-to-end models have already
demonstrated remarkable capabilities. Rather than using denoising diffusion
probabilistic models alone, integrating the abilities of both denoising
diffusion probabilistic models and existing end-to-end models can better
improve the performance of image segmentation. Based on this, we implicitly
introduce residual term into the diffusion process and propose
ResEnsemble-DDPM, which seamlessly integrates the diffusion model and the
end-to-end model through ensemble learning. The output distributions of these
two models are strictly symmetric with respect to the ground truth
distribution, allowing us to integrate the two models by reducing the residual
term. Experimental results demonstrate that our ResEnsemble-DDPM can further
improve the capabilities of existing models. Furthermore, its ensemble learning
strategy can be generalized to other downstream tasks in image generation and
get strong competitiveness.
Related papers
- Dual Diffusion for Unified Image Generation and Understanding [32.7554623473768]
We propose a large-scale and fully end-to-end diffusion model for multi-modal understanding and generation.
We leverage a cross-modal maximum likelihood estimation framework that simultaneously trains the conditional likelihoods of both images and text jointly.
Our model attained competitive performance compared to recent unified image understanding and generation models.
arXiv Detail & Related papers (2024-12-31T05:49:00Z) - Progressive Compression with Universally Quantized Diffusion Models [35.199627388957566]
We explore the potential of diffusion models for progressive coding, resulting in a sequence of bits that can be incrementally transmitted and decoded.
Unlike prior work based on Gaussian diffusion or conditional diffusion models, we propose a new form of diffusion model with uniform noise in the forward process.
We obtain promising first results on image compression, achieving competitive rate-distortion and rate-realism results on a wide range of bit-rates with a single model.
arXiv Detail & Related papers (2024-12-14T19:06:01Z) - Energy-Based Diffusion Language Models for Text Generation [126.23425882687195]
Energy-based Diffusion Language Model (EDLM) is an energy-based model operating at the full sequence level for each diffusion step.
Our framework offers a 1.3$times$ sampling speedup over existing diffusion models.
arXiv Detail & Related papers (2024-10-28T17:25:56Z) - Adaptive Training Meets Progressive Scaling: Elevating Efficiency in Diffusion Models [52.1809084559048]
We propose a novel two-stage divide-and-conquer training strategy termed TDC Training.
It groups timesteps based on task similarity and difficulty, assigning highly customized denoising models to each group, thereby enhancing the performance of diffusion models.
While two-stage training avoids the need to train each model separately, the total training cost is even lower than training a single unified denoising model.
arXiv Detail & Related papers (2023-12-20T03:32:58Z) - Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution [67.9215891673174]
We propose score entropy as a novel loss that naturally extends score matching to discrete spaces.
We test our Score Entropy Discrete Diffusion models on standard language modeling tasks.
arXiv Detail & Related papers (2023-10-25T17:59:12Z) - Soft Mixture Denoising: Beyond the Expressive Bottleneck of Diffusion
Models [76.46246743508651]
We show that current diffusion models actually have an expressive bottleneck in backward denoising.
We introduce soft mixture denoising (SMD), an expressive and efficient model for backward denoising.
arXiv Detail & Related papers (2023-09-25T12:03:32Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
We introduce a novel sampling framework called Steerable Conditional Diffusion.
This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.
We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
arXiv Detail & Related papers (2023-08-28T08:47:06Z) - Image Generation with Multimodal Priors using Denoising Diffusion
Probabilistic Models [54.1843419649895]
A major challenge in using generative models to accomplish this task is the lack of paired data containing all modalities and corresponding outputs.
We propose a solution based on a denoising diffusion probabilistic synthesis models to generate images under multi-model priors.
arXiv Detail & Related papers (2022-06-10T12:23:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.