Class Symbolic Regression: Gotta Fit 'Em All
- URL: http://arxiv.org/abs/2312.01816v2
- Date: Mon, 17 Jun 2024 20:58:31 GMT
- Title: Class Symbolic Regression: Gotta Fit 'Em All
- Authors: Wassim Tenachi, Rodrigo Ibata, Thibaut L. François, Foivos I. Diakogiannis,
- Abstract summary: We introduce 'Class Symbolic Regression' (Class SR) a first framework for automatically finding a single analytical functional form that accurately fits multiple datasets.
This hierarchical framework leverages the common constraint that all the members of a single class of physical phenomena follow a common governing law.
We introduce the first Class SR benchmark, comprising a series of synthetic physical challenges specifically designed to evaluate such algorithms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce 'Class Symbolic Regression' (Class SR) a first framework for automatically finding a single analytical functional form that accurately fits multiple datasets - each realization being governed by its own (possibly) unique set of fitting parameters. This hierarchical framework leverages the common constraint that all the members of a single class of physical phenomena follow a common governing law. Our approach extends the capabilities of our earlier Physical Symbolic Optimization ($\Phi$-SO) framework for Symbolic Regression, which integrates dimensional analysis constraints and deep reinforcement learning for unsupervised symbolic analytical function discovery from data. Additionally, we introduce the first Class SR benchmark, comprising a series of synthetic physical challenges specifically designed to evaluate such algorithms. We demonstrate the efficacy of our novel approach by applying it to these benchmark challenges and showcase its practical utility for astrophysics by successfully extracting an analytic galaxy potential from a set of simulated orbits approximating stellar streams.
Related papers
- In-Context Symbolic Regression: Leveraging Large Language Models for Function Discovery [5.2387832710686695]
In this work, we introduce the first comprehensive framework that utilizes Large Language Models (LLMs) for the task of Symbolic Regression.
We propose In-Context Symbolic Regression (ICSR), an SR method which iteratively refines a functional form with an external LLM and determines its coefficients with an external LLM.
Our findings reveal that LLMs are able to successfully find symbolic equations that fit the given data, matching or outperforming the overall performance of the best SR baselines on four popular benchmarks.
arXiv Detail & Related papers (2024-04-29T20:19:25Z) - Deep Generative Symbolic Regression [83.04219479605801]
Symbolic regression aims to discover concise closed-form mathematical equations from data.
Existing methods, ranging from search to reinforcement learning, fail to scale with the number of input variables.
We propose an instantiation of our framework, Deep Generative Symbolic Regression.
arXiv Detail & Related papers (2023-12-30T17:05:31Z) - Physical Symbolic Optimization [0.0]
We present a framework for constraining the automatic sequential generation of equations to obey the rules of dimensional analysis by construction.
Our symbolic regression algorithm achieves state-of-the-art results in contexts in which variables and constants have known physical units.
arXiv Detail & Related papers (2023-12-06T16:56:28Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Deep symbolic regression for physics guided by units constraints: toward
the automated discovery of physical laws [0.0]
Symbolic Regression is the study of algorithms that automate the search for analytic expressions that fit data.
We present $Phi$-SO, a framework for recovering analytical symbolic expressions from physics data.
arXiv Detail & Related papers (2023-03-06T16:47:59Z) - GSR: A Generalized Symbolic Regression Approach [13.606672419862047]
Generalized Symbolic Regression presented in this paper.
We show that our GSR method outperforms several state-of-the-art methods on the well-known Symbolic Regression benchmark problem sets.
We highlight the strengths of GSR by introducing SymSet, a new SR benchmark set which is more challenging relative to the existing benchmarks.
arXiv Detail & Related papers (2022-05-31T07:20:17Z) - Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency [111.83670279016599]
We study reinforcement learning for partially observed decision processes (POMDPs) with infinite observation and state spaces.
We make the first attempt at partial observability and function approximation for a class of POMDPs with a linear structure.
arXiv Detail & Related papers (2022-04-20T21:15:38Z) - On the Estimation of Complex Circuits Functional Failure Rate by Machine
Learning Techniques [0.16311150636417257]
De-Rating or Vulnerability Factors are a major feature of failure analysis efforts mandated by today's Functional Safety requirements.
New approach is proposed which uses Machine Learning to estimate the Functional De-Rating of individual flip-flops.
arXiv Detail & Related papers (2020-02-18T15:18:31Z) - Target-Embedding Autoencoders for Supervised Representation Learning [111.07204912245841]
This paper analyzes a framework for improving generalization in a purely supervised setting, where the target space is high-dimensional.
We motivate and formalize the general framework of target-embedding autoencoders (TEA) for supervised prediction, learning intermediate latent representations jointly optimized to be both predictable from features as well as predictive of targets.
arXiv Detail & Related papers (2020-01-23T02:37:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.