Coefficient Shape Alignment in Multiple Functional Linear Regression
- URL: http://arxiv.org/abs/2312.01925v4
- Date: Wed, 23 Oct 2024 14:17:59 GMT
- Title: Coefficient Shape Alignment in Multiple Functional Linear Regression
- Authors: Shuhao Jiao, Ngai-Hang Chan,
- Abstract summary: We develop a novel grouped multiple functional regression model with a new regularization approach termed it coefficient shape alignment"
We establish conditions under which the true grouping structure can be accurately identified and derive the properties of the model estimates.
The practical applicability of the model is demonstrated through real data analysis in the context of sugar quality evaluation.
- Score: 0.0
- License:
- Abstract: In multivariate functional data analysis, different functional covariates often exhibit homogeneity. The covariates with pronounced homogeneity can be analyzed jointly within the same group, offering a parsimonious approach to modeling multivariate functional data. In this paper, a novel grouped multiple functional regression model with a new regularization approach termed {\it ``coefficient shape alignment"} is developed to tackle functional covariates homogeneity. The modeling procedure includes two steps: first aggregate covariates into disjoint groups using the new regularization approach; then the grouped multiple functional regression model is established based on the detected grouping structure. In this grouped model, the coefficient functions of covariates in the same group share the same shape, invariant to scaling. The new regularization approach works by penalizing differences in the shape of the coefficients. We establish conditions under which the true grouping structure can be accurately identified and derive the asymptotic properties of the model estimates. Extensive simulation studies are conducted to assess the finite-sample performance of the proposed methods. The practical applicability of the model is demonstrated through real data analysis in the context of sugar quality evaluation. This work offers a novel framework for analyzing the homogeneity of functional covariates and constructing parsimonious models for multivariate functional data.
Related papers
- Functional Generalized Canonical Correlation Analysis for studying
multiple longitudinal variables [0.9208007322096533]
Functional Generalized Canonical Correlation Analysis (FGCCA) is a new framework for exploring associations between multiple random processes observed jointly.
We establish the monotonic property of the solving procedure and introduce a Bayesian approach for estimating canonical components.
We present a use case on a longitudinal dataset and evaluate the method's efficiency in simulation studies.
arXiv Detail & Related papers (2023-10-11T09:21:31Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - HiPerformer: Hierarchically Permutation-Equivariant Transformer for Time
Series Forecasting [56.95572957863576]
We propose a hierarchically permutation-equivariant model that considers both the relationship among components in the same group and the relationship among groups.
The experiments conducted on real-world data demonstrate that the proposed method outperforms existing state-of-the-art methods.
arXiv Detail & Related papers (2023-05-14T05:11:52Z) - Multivariate regression modeling in integrative analysis via sparse
regularization [0.0]
Integrative analysis is an effective method to pool useful information from multiple independent datasets.
The integration is achieved by sparse estimation that performs variable and group selection.
The performance of the proposed method is demonstrated through Monte Carlo simulation and analyzing wastewater treatment data with microbe measurements.
arXiv Detail & Related papers (2023-04-15T02:27:51Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - Meta-Model Structure Selection: Building Polynomial NARX Model for
Regression and Classification [0.0]
This work presents a new meta-heuristic approach to select the structure of NARX models for regression and classification problems.
The robustness of the new algorithm is tested on several simulated and experimental system with different nonlinear characteristics.
arXiv Detail & Related papers (2021-09-21T02:05:40Z) - Unsupervised clustering of series using dynamic programming and neural
processes [0.0]
We would like to segment and cluster a series such that the resulting blocks present in each cluster are coherent with respect to a predefined model structure.
It is useful to establish a general framework that enables the integration of plausible models and also accommodates data-driven approach into one approximated model to assist the clustering task.
In this work, we investigate the use of neural processes to build the approximated model while yielding the same assumptions required by the algorithm presented in arXiv:2101.09512.
arXiv Detail & Related papers (2021-01-26T18:17:10Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
We propose an FMR model that finds sample clusters and jointly models multiple incomplete mixed-type targets simultaneously.
We provide non-asymptotic oracle performance bounds for our model under a high-dimensional learning framework.
The results show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2020-10-12T03:27:07Z) - Out-of-distribution Generalization via Partial Feature Decorrelation [72.96261704851683]
We present a novel Partial Feature Decorrelation Learning (PFDL) algorithm, which jointly optimize a feature decomposition network and the target image classification model.
The experiments on real-world datasets demonstrate that our method can improve the backbone model's accuracy on OOD image classification datasets.
arXiv Detail & Related papers (2020-07-30T05:48:48Z) - Analysis of Bayesian Inference Algorithms by the Dynamical Functional
Approach [2.8021833233819486]
We analyze an algorithm for approximate inference with large Gaussian latent variable models in a student-trivial scenario.
For the case of perfect data-model matching, the knowledge of static order parameters derived from the replica method allows us to obtain efficient algorithmic updates.
arXiv Detail & Related papers (2020-01-14T17:22:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.