Fisher information susceptibility for multiparameter quantum estimation
- URL: http://arxiv.org/abs/2312.02035v2
- Date: Fri, 31 May 2024 14:35:10 GMT
- Title: Fisher information susceptibility for multiparameter quantum estimation
- Authors: Francesco Albarelli, Ilaria Gianani, Marco G. Genoni, Marco Barbieri,
- Abstract summary: Noise affects the performance of quantum technologies, hence the importance of elaborating operative figures of merit.
In quantum metrology, the introduction of the Fisher information measurement noise susceptibility now allows to quantify the robustness of measurement.
We provide its mathematical definition in the form of a semidefinite program.
- Score: 0.23436632098950458
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Noise affects the performance of quantum technologies, hence the importance of elaborating operative figures of merit that can capture its impact in exact terms. In quantum metrology, the introduction of the Fisher information measurement noise susceptibility now allows to quantify the robustness of measurement for single-parameter estimation. Here we extend this notion to the multiparameter quantum estimation scenario. We provide its mathematical definition in the form of a semidefinite program. Although a closed formula could not be found, we further derive an upper and a lower bound to the susceptibility. We then apply these techniques to two paradigmatic examples of multiparameter estimation: the joint estimation of phase and phase-diffusion and the estimation of the different parameters describing the incoherent mixture of optical point sources. Our figure of merit provides clear indications on conditions allowing or hampering robustness of multiparameter measurements.
Related papers
- Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Quantum metrology in the finite-sample regime [0.6299766708197883]
In quantum metrology, the ultimate precision of estimating an unknown parameter is often stated in terms of the Cram'er-Rao bound.
We propose to quantify the quality of a protocol by the probability of obtaining an estimate with a given accuracy.
arXiv Detail & Related papers (2023-07-12T18:00:04Z) - Experimental investigation of Bayesian bounds in multiparameter
estimation [0.0]
This article presents an evaluation of Bayesian methods for multiple phase estimation.
It is applied to experimental data generated from the output statistics of a three-arm interferometer seeded by single photons.
arXiv Detail & Related papers (2023-04-13T11:11:17Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Measurement noise susceptibility in quantum estimation [0.0]
We introduce a new concept of Fisher Information Measurement Noise Susceptibility.
We derive an explicit formula for the quantity, and demonstrate its usefulness in analysis of paradigmatic quantum estimation schemes.
arXiv Detail & Related papers (2022-06-24T18:00:03Z) - Analytical techniques in single and multi-parameter quantum estimation
theory: a focused review [0.0]
This review provides techniques on the analytical calculation of the quantum Fisher information as well as the quantum Fisher information matrix.
It provides a mathematical transition from classical to quantum estimation theory applied to many freedom quantum systems.
arXiv Detail & Related papers (2022-04-29T17:29:45Z) - Dual-Frequency Quantum Phase Estimation Mitigates the Spectral Leakage
of Quantum Algorithms [76.15799379604898]
Quantum phase estimation suffers from spectral leakage when the reciprocal of the record length is not an integer multiple of the unknown phase.
We propose a dual-frequency estimator, which approaches the Cramer-Rao bound, when multiple samples are available.
arXiv Detail & Related papers (2022-01-23T17:20:34Z) - Uncertainty and Trade-offs in Quantum Multiparameter Estimation [0.0]
Uncertainty relations in quantum mechanics express bounds on our ability to simultaneously obtain knowledge about expectation values of non-commuting observables of a quantum system.
They quantify trade-offs in accuracy between complementary pieces of information about the system.
An uncertainty relation emerges between achievable variances of the different estimators.
arXiv Detail & Related papers (2020-02-14T10:43:40Z) - Quantum probes for universal gravity corrections [62.997667081978825]
We review the concept of minimum length and show how it induces a perturbative term appearing in the Hamiltonian of any quantum system.
We evaluate the Quantum Fisher Information in order to find the ultimate bounds to the precision of any estimation procedure.
Our results show that quantum probes are convenient resources, providing potential enhancement in precision.
arXiv Detail & Related papers (2020-02-13T19:35:07Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z) - Direct estimation of quantum coherence by collective measurements [54.97898890263183]
We introduce a collective measurement scheme for estimating the amount of coherence in quantum states.
Our scheme outperforms other estimation methods based on tomography or adaptive measurements.
We show that our method is accessible with today's technology by implementing it experimentally with photons.
arXiv Detail & Related papers (2020-01-06T03:50:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.