論文の概要: TimeChat: A Time-sensitive Multimodal Large Language Model for Long Video Understanding
- arxiv url: http://arxiv.org/abs/2312.02051v2
- Date: Thu, 28 Mar 2024 12:41:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 21:12:21.971836
- Title: TimeChat: A Time-sensitive Multimodal Large Language Model for Long Video Understanding
- Title(参考訳): TimeChat: 長時間ビデオ理解のための時間依存型マルチモーダル大言語モデル
- Authors: Shuhuai Ren, Linli Yao, Shicheng Li, Xu Sun, Lu Hou,
- Abstract要約: TimeChatは、長いビデオ理解のために特別に設計された、時間に敏感なマルチモーダルな大規模言語モデルである。
本モデルは,(1) フレームのタイムスタンプに視覚的コンテンツをバインドするタイムスタンプ対応フレームエンコーダ,(2) 長さの異なるビデオトークンシーケンスを生成するスライドビデオQ-Formerの2つの重要なアーキテクチャ的コントリビューションを含む。
- 参考スコア(独自算出の注目度): 20.037781644877388
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work proposes TimeChat, a time-sensitive multimodal large language model specifically designed for long video understanding. Our model incorporates two key architectural contributions: (1) a timestamp-aware frame encoder that binds visual content with the timestamp of each frame, and (2) a sliding video Q-Former that produces a video token sequence of varying lengths to accommodate videos of various durations. Additionally, we construct an instruction-tuning dataset, encompassing 6 tasks and a total of 125K instances, to further enhance TimeChat's instruction-following performance. Experiment results across various video understanding tasks, such as dense captioning, temporal grounding, and highlight detection, demonstrate TimeChat's strong zero-shot temporal localization and reasoning capabilities. For example, it achieves +9.2 F1 score and +2.8 CIDEr on YouCook2, +5.8 HIT@1 on QVHighlights, and +27.5 R@1 (IoU=0.5) on Charades-STA, compared to state-of-the-art video large language models, holding the potential to serve as a versatile video assistant for long-form video comprehension tasks and satisfy realistic user requirements.
- Abstract(参考訳): この研究は、時間に敏感なマルチモーダルな大規模言語モデルであるTimeChatを提案する。
本モデルは,(1) フレームのタイムスタンプに視覚的コンテンツをバインドするタイムスタンプ対応フレームエンコーダ,(2) 長さの異なるビデオトークンシーケンスを生成するスライドビデオQ-Formerの2つの重要なアーキテクチャ的コントリビューションを含む。
さらに,6つのタスクと125Kインスタンスを含む命令調整データセットを構築し,TimeChatの命令追従性能をさらに向上させる。
濃密なキャプション、時間的接地、ハイライト検出など、さまざまなビデオ理解タスクの実験結果は、TimeChatの強いゼロショット時間的ローカライゼーションと推論能力を示している。
例えば、YouCook2の +9.2 F1 スコアと +2.8 CIDEr、QVHighlightsの +5.8 HIT@1、Charades-STAの +27.5 R@1 (IoU=0.5) を、最先端のビデオ大言語モデルと比較すると達成している。
関連論文リスト
- HLV-1K: A Large-scale Hour-Long Video Benchmark for Time-Specific Long Video Understanding [52.696422425058245]
我々は、長時間ビデオ理解モデルを評価するために、大規模な時間長ビデオベンチマークHLV-1Kを構築した。
HLV-1Kは、高品質質問応答(QA)とマルチチョイス質問応答(MCQA)を備えた1009時間ビデオからなる。
我々は,既存の最先端手法を用いてベンチマークを評価し,様々なレベルでの深層ビデオ理解能力をテストすることの価値を実証した。
論文 参考訳(メタデータ) (2025-01-03T05:32:37Z) - VideoLLM Knows When to Speak: Enhancing Time-Sensitive Video Comprehension with Video-Text Duet Interaction Format [40.66959827210223]
既存の作業では、ユーザはビデオ全体とクエリを入力として使用することでビデオLLMと対話し、その後モデルが応答を生成する。
このインタラクションフォーマットは、ライブストリーミングの理解のようなシナリオにおけるVideoLLMsの適用を制限する。
本稿では,ビデオ・テキスト・デュエットインタラクション形式に焦点をあてる。
MMDuetITはビデオ・テキスト・デュエット・インタラクション・フォーマットにビデオLLMを適応させるために設計されたビデオ・テキスト・トレーニング・データセットである。
論文 参考訳(メタデータ) (2024-11-27T02:15:34Z) - MovieChat+: Question-aware Sparse Memory for Long Video Question Answering [36.14140811797466]
長編ビデオの理解という課題を克服するために,MovieChatを提案する。
我々はトランスフォーマーのトークンを特別な設計のメモリ機構と組み合わせてメモリのキャリアとして使用しています。
MovieChatは1Kの長ビデオと2Kの時間的グラウンドラベルと14Kのマニュアルアノテーションを備えたMovieChat-1Kベンチマークとともに、長いビデオ理解における最先端のパフォーマンスを実現し、本手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-04-26T06:17:04Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
ダイナミックスビデオのモデリングのため、ビデオ事前トレーニングは難しい。
本稿では,ビデオ事前学習におけるこのような制限を,効率的なビデオ分解によって解決する。
筆者らのフレームワークは,13のマルチモーダルベンチマークにおいて,画像と映像のコンテントの理解と生成が可能であることを実証した。
論文 参考訳(メタデータ) (2024-02-05T16:30:49Z) - TESTA: Temporal-Spatial Token Aggregation for Long-form Video-Language
Understanding [20.16000249533665]
TESTAは、似たようなフレームを適応的に集約することで、ビデオセマンティクスを凝縮する。
TESTAに基づいて,各ビデオブロックに分割した時空トークン集約モジュールを備えた事前学習ビデオ言語モデルを導入する。
段落間検索と長文ビデオQAタスクのための5つのデータセットを用いて,本モデルの評価を行った。
論文 参考訳(メタデータ) (2023-10-29T16:25:32Z) - HiTeA: Hierarchical Temporal-Aware Video-Language Pre-training [49.52679453475878]
本稿では,モーメントとテキスト間の相互アライメントをモデル化するための時間対応ビデオ言語事前学習フレームワークHiTeAを提案する。
15の精確なビデオ言語理解と生成タスクに関する最先端の成果を得た。
論文 参考訳(メタデータ) (2022-12-30T04:27:01Z) - Long-Form Video-Language Pre-Training with Multimodal Temporal
Contrastive Learning [39.80936685227549]
大規模ビデオ言語事前学習では、ビデオ言語理解タスクが大幅に改善されている。
我々は、VILA(Long-Form VIdeo-LAnguage Pre-Training Model)を導入し、大規模な長文ビデオおよび段落データセットでトレーニングする。
我々は、7つの下流の長文ビデオ言語理解タスクでモデルを微調整し、新しい最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-10-12T09:08:27Z) - Revisiting the "Video" in Video-Language Understanding [56.15777956496518]
本稿では,ビデオ言語解析の新しいモデルであるアテンポラルプローブ(ATP)を提案する。
現在のビデオ言語ベンチマークの限界とポテンシャルを特徴付ける。
ATPをフルビデオレベル時間モデルに効果的に統合することで、効率と最先端の精度が向上することを示す。
論文 参考訳(メタデータ) (2022-06-03T17:57:33Z) - Language Models with Image Descriptors are Strong Few-Shot
Video-Language Learners [167.0346394848718]
画像と言語モデルを用いたビデオ言語学習システムVidILを提案する。
画像言語モデルを用いて、映像コンテンツをフレームキャプション、オブジェクト、属性、イベントフレーズに変換する。
次に、いくつかのインコンテキスト例を含むプロンプトを持つ言語モデルに指示して、合成されたコンテンツからターゲット出力を生成する。
論文 参考訳(メタデータ) (2022-05-22T05:18:27Z) - HERO: Hierarchical Encoder for Video+Language Omni-representation
Pre-training [75.55823420847759]
本稿では,大規模ビデオ+言語オムニ表現学習のための新しいフレームワークHEROを提案する。
HEROは階層構造でマルチモーダル入力を符号化し、ビデオフレームのローカルコンテキストをクロスモーダル変換器でキャプチャする。
HEROはHowTo100Mと大規模TVデータセットを共同でトレーニングし、マルチキャラクタインタラクションによる複雑な社会的ダイナミクスの理解を深める。
論文 参考訳(メタデータ) (2020-05-01T03:49:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。