論文の概要: Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization
- arxiv url: http://arxiv.org/abs/2402.03161v3
- Date: Mon, 3 Jun 2024 08:09:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-04 19:03:18.297319
- Title: Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization
- Title(参考訳): Video-LaVIT: 切り離された視覚運動のトークン化による統合ビデオランゲージ事前トレーニング
- Authors: Yang Jin, Zhicheng Sun, Kun Xu, Kun Xu, Liwei Chen, Hao Jiang, Quzhe Huang, Chengru Song, Yuliang Liu, Di Zhang, Yang Song, Kun Gai, Yadong Mu,
- Abstract要約: ダイナミックスビデオのモデリングのため、ビデオ事前トレーニングは難しい。
本稿では,ビデオ事前学習におけるこのような制限を,効率的なビデオ分解によって解決する。
筆者らのフレームワークは,13のマルチモーダルベンチマークにおいて,画像と映像のコンテントの理解と生成が可能であることを実証した。
- 参考スコア(独自算出の注目度): 52.63845811751936
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In light of recent advances in multimodal Large Language Models (LLMs), there is increasing attention to scaling them from image-text data to more informative real-world videos. Compared to static images, video poses unique challenges for effective large-scale pre-training due to the modeling of its spatiotemporal dynamics. In this paper, we address such limitations in video-language pre-training with an efficient video decomposition that represents each video as keyframes and temporal motions. These are then adapted to an LLM using well-designed tokenizers that discretize visual and temporal information as a few tokens, thus enabling unified generative pre-training of videos, images, and text. At inference, the generated tokens from the LLM are carefully recovered to the original continuous pixel space to create various video content. Our proposed framework is both capable of comprehending and generating image and video content, as demonstrated by its competitive performance across 13 multimodal benchmarks in image and video understanding and generation. Our code and models are available at https://video-lavit.github.io.
- Abstract(参考訳): マルチモーダル大規模言語モデル(LLM)の最近の進歩を踏まえ、画像テキストデータからより情報に富んだ実世界のビデオへの拡張に注目が集まっている。
静止画像と比較すると,ビデオは時空間力学のモデル化により,大規模な事前学習を効果的に行う上で,ユニークな課題となる。
本稿では,各映像をキーフレームと時間的動きとして表現する効率的な映像分解法を用いて,ビデオ言語事前学習におけるこのような制限に対処する。
これらは、よく設計されたトークンーを使用してLCMに適合し、視覚的および時間的情報をいくつかのトークンとして識別し、ビデオ、画像、テキストの統一的な生成前トレーニングを可能にする。
推測では、LPMから生成されたトークンを元の連続画素空間に慎重に回収し、様々なビデオコンテンツを作成する。
提案するフレームワークは,画像および映像の理解と生成において,13のマルチモーダルベンチマークの競合性能で示されるように,画像および映像コンテンツの理解と生成を両立させることができる。
私たちのコードとモデルはhttps://video-lavit.github.io.comで公開されています。
関連論文リスト
- Free Video-LLM: Prompt-guided Visual Perception for Efficient Training-free Video LLMs [56.040198387038025]
トレーニング不要ビデオLLMの効率的な推論のための新しいプロンプト誘導視覚認識フレームワーク(Free Video-LLM)を提案する。
提案手法は,複数のビデオ質問応答ベンチマークにおいて高い性能を維持しながら,視覚トークンの数を効果的に削減する。
論文 参考訳(メタデータ) (2024-10-14T12:35:12Z) - Realizing Video Summarization from the Path of Language-based Semantic Understanding [19.825666473712197]
本稿では,Mixture of Experts(MoE)パラダイムに触発された新しいビデオ要約フレームワークを提案する。
提案手法は,複数のビデオLLMを統合し,包括的で一貫性のあるテキスト要約を生成する。
論文 参考訳(メタデータ) (2024-10-06T15:03:22Z) - InternVideo2: Scaling Foundation Models for Multimodal Video Understanding [51.129913789991924]
InternVideo2は、ビデオファウンデーションモデル(FM)の新たなファミリーで、ビデオ認識、ビデオ音声タスク、ビデオ中心タスクの最先端の結果を達成する。
私たちのコアデザインは、マスク付きビデオモデリング、クロスコントラスト学習、予測トークンを統合し、最大6Bビデオサイズまでスケールアップするプログレッシブトレーニングアプローチです。
論文 参考訳(メタデータ) (2024-03-22T17:57:42Z) - MEVG: Multi-event Video Generation with Text-to-Video Models [18.06640097064693]
本稿では,ユーザから複数の個々の文が与えられた複数のイベントを示すビデオを生成する,拡散に基づく新しいビデオ生成手法を提案する。
本手法は, 微調整処理を伴わずに, 事前学習したテキスト・ビデオ生成モデルを使用するため, 大規模なビデオデータセットを必要としない。
提案手法は,コンテンツとセマンティクスの時間的コヒーレンシーの観点から,他のビデオ生成モデルよりも優れている。
論文 参考訳(メタデータ) (2023-12-07T06:53:25Z) - VidCoM: Fast Video Comprehension through Large Language Models with Multimodal Tools [44.78291853329394]
textbfVidCoMは、Large Language Models (LLM)を活用して、軽量なビジュアルツールを使用して動画を推論する高速適応フレームワークである。
InsOVERアルゴリズムは、言語命令の分解とビデオイベントの間の効率的なハンガリー語マッチングに基づいて、対応するビデオイベントを特定する。
論文 参考訳(メタデータ) (2023-10-16T17:05:56Z) - Frozen CLIP Models are Efficient Video Learners [86.73871814176795]
ビデオ認識はエンドツーエンドの学習パラダイムに支配されている。
Contrastive Vision-Language Pre-Trainingの最近の進歩は、視覚認識タスクのための新しいルートの道を開く。
高品質なビデオ認識モデルを直接トレーニングする効率的なフレームワークである、効率的なビデオ学習を提案する。
論文 参考訳(メタデータ) (2022-08-06T17:38:25Z) - End-to-end Generative Pretraining for Multimodal Video Captioning [82.79187814057313]
本稿では,未学習ビデオから学習するための新しい事前学習フレームワークであるMV-GPTを提案する。
最近のビデオ言語事前学習フレームワークとは異なり、我々のフレームワークはマルチモーダルビデオエンコーダと文デコーダを共同で訓練する。
本モデルは,4つの標準ベンチマークによるマルチモーダルビデオキャプションの最先端性能を実現する。
論文 参考訳(メタデータ) (2022-01-20T16:16:21Z) - Understanding Chinese Video and Language via Contrastive Multimodal
Pre-Training [79.88705563918413]
VICTORという新しいビデオ言語理解フレームワークを提案します。VICTORは対比mulTimOdal pRe-trainingによる視覚言語理解の略です。
VICTORは、対応する高品質のテキスト記述を備えた1000万以上の完全なビデオを含む大規模な中国のビデオ言語データセットで訓練されています。
論文 参考訳(メタデータ) (2021-04-19T15:58:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。