論文の概要: DUCK: Distance-based Unlearning via Centroid Kinematics
- arxiv url: http://arxiv.org/abs/2312.02052v1
- Date: Mon, 4 Dec 2023 17:10:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-05 14:30:04.075507
- Title: DUCK: Distance-based Unlearning via Centroid Kinematics
- Title(参考訳): DUCK:Centroid Kinematicsによる遠隔学習
- Authors: Marco Cotogni, Jacopo Bonato, Luigi Sabetta, Francesco Pelosin and
Alessandro Nicolosi
- Abstract要約: 本研究は,Centroid Kinematics (DUCK) による遠隔学習(Distance-based Unlearning)と呼ばれる新しいアンラーニングアルゴリズムを導入する。
アルゴリズムの性能評価は、様々なベンチマークデータセットにまたがって行われる。
対象データを忘れる際の未学習プロセスの有効性だけでなく,元のモデルに対する性能損失の定量化も含む,適応未学習スコア(Adaptive Unlearning Score, AUS)と呼ばれる新しいメトリクスを導入する。
- 参考スコア(独自算出の注目度): 42.642008092347986
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Machine Unlearning is rising as a new field, driven by the pressing necessity
of ensuring privacy in modern artificial intelligence models. This technique
primarily aims to eradicate any residual influence of a specific subset of data
from the knowledge acquired by a neural model during its training. This work
introduces a novel unlearning algorithm, denoted as Distance-based Unlearning
via Centroid Kinematics (DUCK), which employs metric learning to guide the
removal of samples matching the nearest incorrect centroid in the embedding
space. Evaluation of the algorithm's performance is conducted across various
benchmark datasets in two distinct scenarios, class removal, and homogeneous
sampling removal, obtaining state-of-the-art performance. We introduce a novel
metric, called Adaptive Unlearning Score (AUS), encompassing not only the
efficacy of the unlearning process in forgetting target data but also
quantifying the performance loss relative to the original model. Moreover, we
propose a novel membership inference attack to assess the algorithm's capacity
to erase previously acquired knowledge, designed to be adaptable to future
methodologies.
- Abstract(参考訳): 機械学習は新しい分野として成長しており、現代の人工知能モデルでプライバシーを確保する必要性が高まっている。
このテクニックは、トレーニング中に神経モデルによって獲得された知識から、特定のデータサブセットの残留影響を根絶することを目的としている。
本研究は, 遠心運動学 (duck) を用いた距離ベースアンラーニング ( distance-based unlearning) と呼ばれる新しいアンラーニングアルゴリズムを提案する。
アルゴリズムの性能評価は、クラス除去と均質なサンプリング除去という2つの異なるシナリオで、様々なベンチマークデータセット間で行われ、最先端のパフォーマンスが得られる。
対象データを忘れる際の未学習プロセスの有効性だけでなく,元のモデルに対する性能損失の定量化も含む,適応未学習スコア(Adaptive Unlearning Score, AUS)と呼ばれる新しいメトリクスを導入する。
さらに,従来の知識を消去するアルゴリズムの能力を評価するために,新たなメンバシップ推論攻撃を提案する。
関連論文リスト
- RESTOR: Knowledge Recovery through Machine Unlearning [71.75834077528305]
Webスケールコーパスでトレーニングされた大規模な言語モデルは、望ましくないデータポイントを記憶することができる。
訓練されたモデルからこれらのデータポイントを「消去」することを目的とした、多くの機械学習手法が提案されている。
以下に示す次元に基づいて,機械学習のためのRESTORフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-31T20:54:35Z) - Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
機械学習 -- 事前訓練された機械学習モデルで、小さな"ターゲットセット"トレーニングデータを効率的に削除する -- は、最近関心を集めている。
最近の研究では、機械学習技術はこのような困難な環境では耐えられないことが示されている。
論文 参考訳(メタデータ) (2024-10-30T17:20:10Z) - Silver Linings in the Shadows: Harnessing Membership Inference for Machine Unlearning [7.557226714828334]
ニューラルネットワークから特定のデータサンプルの影響を除去する新しい学習機構を提案する。
この目的を達成するために、我々は、ターゲットモデルの重みやアクティベーション値からプライバシーに敏感な情報を排除するための、新しい損失関数を構築した。
本研究の結果は,未学習の有効性とレイテンシ,および主課題の忠実度の観点から,我々のアプローチの優れた性能を示すものである。
論文 参考訳(メタデータ) (2024-07-01T00:20:26Z) - Adversarial Machine Unlearning [26.809123658470693]
本稿では,機械学習モデルに対する特定のトレーニングデータの影響を取り除くことを目的とした,機械学習の課題に焦点を当てた。
伝統的に、未学習アルゴリズムの開発は、ある種のプライバシー脅威である会員推論攻撃(MIA)と並行して実行される。
未学習アルゴリズムの設計にMIAを統合するゲーム理論フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-11T20:07:22Z) - Adaptive Rentention & Correction for Continual Learning [114.5656325514408]
連続学習における一般的な問題は、最新のタスクに対する分類層のバイアスである。
アダプティブ・リテンション・アンド・コレクション (ARC) のアプローチを例に挙げる。
ARCはCIFAR-100とImagenet-Rのデータセットで平均2.7%と2.6%のパフォーマンス向上を達成した。
論文 参考訳(メタデータ) (2024-05-23T08:43:09Z) - Partially Blinded Unlearning: Class Unlearning for Deep Networks a Bayesian Perspective [4.31734012105466]
マシン・アンラーニング(英: Machine Unlearning)とは、特定のデータセットやクラスに指定された情報を事前訓練されたモデルから選択的に破棄するプロセスである。
本研究では,事前学習した分類ネットワークから,特定の種類のデータに関連付けられた情報の目的的除去に適した手法を提案する。
本手法は,従来の最先端の未学習手法を超越し,優れた有効性を示す。
論文 参考訳(メタデータ) (2024-03-24T17:33:22Z) - An Information Theoretic Approach to Machine Unlearning [45.600917449314444]
学びの鍵となる課題は、モデルのパフォーマンスを保ちながら、必要なデータをタイムリーに忘れることである。
この研究では、ゼロショットのアンラーニングシナリオに対処し、未学習のアルゴリズムは、トレーニングされたモデルと忘れられるデータだけが与えられたデータを削除できなければならない。
モデルの幾何に基づいて、単純だが原則化されたゼロショットアンラーニング法を導出する。
論文 参考訳(メタデータ) (2024-02-02T13:33:30Z) - Machine unlearning through fine-grained model parameters perturbation [26.653596302257057]
そこで本研究では,不エクササイズマシンの非学習戦略であるTop-KパラメータとRandom-kパラメータの微粒化を提案する。
また,機械学習の有効性を評価する上での課題にも取り組む。
論文 参考訳(メタデータ) (2024-01-09T07:14:45Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
学び アクティブラーニング(LAL)は、アクティブラーニング戦略自体を学ぶことを提案し、与えられた設定に適応できるようにする。
能動学習問題の対称性と独立性を利用した新しい分類法を提案する。
私たちのアプローチは、筋電図から学ぶことに基づいており、モデルに標準ではない目的に適応する能力を与えます。
論文 参考訳(メタデータ) (2023-09-11T14:16:37Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
アクションラベルはソースデータセットでのみ利用可能だが、トレーニング段階のターゲットデータセットでは利用できない。
我々は,2つの骨格に基づく行動データセット間の領域シフトを低減するために,自己スーパービジョン方式を利用する。
時間的セグメントや人体部分のセグメンテーションとパーフォーミングにより、我々は2つの自己教師あり学習分類タスクを設計する。
論文 参考訳(メタデータ) (2022-07-17T07:05:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。