論文の概要: InvertAvatar: Incremental GAN Inversion for Generalized Head Avatars
- arxiv url: http://arxiv.org/abs/2312.02222v1
- Date: Sun, 3 Dec 2023 18:59:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-06 18:11:05.137678
- Title: InvertAvatar: Incremental GAN Inversion for Generalized Head Avatars
- Title(参考訳): InvertAvatar: 一般化ヘッドアバターに対するインクリメンタルGANインバージョン
- Authors: Xiaochen Zhao, Jingxiang Sun, Lizhen Wang, Yebin Liu
- Abstract要約: 本稿では,複数フレームからの忠実度向上を目的としたアルゴリズムを用いて,アバター復元性能を向上させる新しいフレームワークを提案する。
本アーキテクチャでは,画素対応画像-画像変換を重要視し,観測空間と標準空間の対応を学習する必要性を緩和する。
提案手法は,1ショットと数ショットのアバターアニメーションタスクにおける最先端の性能を示す。
- 参考スコア(独自算出の注目度): 39.84321605007352
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While high fidelity and efficiency are central to the creation of digital
head avatars, recent methods relying on 2D or 3D generative models often
experience limitations such as shape distortion, expression inaccuracy, and
identity flickering. Additionally, existing one-shot inversion techniques fail
to fully leverage multiple input images for detailed feature extraction. We
propose a novel framework, \textbf{Incremental 3D GAN Inversion}, that enhances
avatar reconstruction performance using an algorithm designed to increase the
fidelity from multiple frames, resulting in improved reconstruction quality
proportional to frame count. Our method introduces a unique animatable 3D GAN
prior with two crucial modifications for enhanced expression controllability
alongside an innovative neural texture encoder that categorizes texture feature
spaces based on UV parameterization. Differentiating from traditional
techniques, our architecture emphasizes pixel-aligned image-to-image
translation, mitigating the need to learn correspondences between observation
and canonical spaces. Furthermore, we incorporate ConvGRU-based recurrent
networks for temporal data aggregation from multiple frames, boosting geometry
and texture detail reconstruction. The proposed paradigm demonstrates
state-of-the-art performance on one-shot and few-shot avatar animation tasks.
- Abstract(参考訳): 高忠実度と効率性はデジタルヘッドアバターの作成の中心であるが、近年の2次元または3次元生成モデルに依存する手法では、形状の歪み、表現の不正確さ、アイデンティティ・フリックリングといった制限がしばしば経験されている。
さらに、既存のワンショット反転技術では、詳細な特徴抽出のために複数の入力画像を完全に活用できない。
本稿では,複数フレームからの忠実度向上を目的としたアルゴリズムを用いて,アバター復元性能を向上させる新しいフレームワークである‘textbf{Incremental 3D GAN Inversion} を提案する。
本手法では,UVパラメータ化に基づくテクスチャ特徴空間を分類する革新的テクスチャエンコーダとともに,表現制御性向上のための2つの重要な修正を加えた,ユニークなアニマタブルな3D GANを導入する。
従来の手法と異なるアーキテクチャでは、ピクセルに整合した画像から画像への変換を強調し、観測と標準空間間の対応を学習する必要性を緩和する。
さらに,複数のフレームからの時間的データアグリゲーションにConvGRUをベースとしたリカレントネットワークを導入し,形状やテクスチャディテールを再構築する。
提案するパラダイムは,ワンショットおよびマイショットアバターアニメーションタスクにおける最先端のパフォーマンスを示す。
関連論文リスト
- GTR: Improving Large 3D Reconstruction Models through Geometry and Texture Refinement [51.97726804507328]
マルチビュー画像から3次元メッシュを再構成する手法を提案する。
提案手法は, 変圧器を用いたトリプレーンジェネレータとニューラルレージアンスフィールド(NeRF)モデルを用いた大規模再構成モデルから着想を得たものである。
論文 参考訳(メタデータ) (2024-06-09T05:19:24Z) - FlexiDreamer: Single Image-to-3D Generation with FlexiCubes [20.871847154995688]
FlexiDreamerは、マルチビュー生成イメージから高品質なメッシュを直接再構築する新しいフレームワークである。
提案手法では,1つの画像から3次元の下流タスクにおいて,約1分で高忠実度3Dメッシュを生成することができる。
論文 参考訳(メタデータ) (2024-04-01T08:20:18Z) - 2L3: Lifting Imperfect Generated 2D Images into Accurate 3D [16.66666619143761]
マルチビュー(MV)3次元再構成は,生成したMV画像を一貫した3次元オブジェクトに融合させる,有望なソリューションである。
しかし、生成された画像は、通常、一貫性のない照明、不整合幾何学、スパースビューに悩まされ、復元の質が低下する。
本稿では, 内在的分解誘導, 過渡的モノ先行誘導, および3つの問題に対処するための視認性向上を活用する新しい3次元再構成フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-29T02:30:31Z) - Hyper-VolTran: Fast and Generalizable One-Shot Image to 3D Object
Structure via HyperNetworks [53.67497327319569]
画像から3Dまでを1つの視点から解く新しいニューラルレンダリング手法を提案する。
提案手法では, 符号付き距離関数を表面表現として使用し, 幾何エンコードボリュームとハイパーネットワークスによる一般化可能な事前処理を取り入れた。
本実験は,一貫した結果と高速な生成による提案手法の利点を示す。
論文 参考訳(メタデータ) (2023-12-24T08:42:37Z) - Generalizable One-shot Neural Head Avatar [90.50492165284724]
本研究では,1枚の画像から3次元頭部アバターを再構成し,アニメイトする手法を提案する。
本研究では,一視点画像に基づく識別不能な人物を一般化するだけでなく,顔領域内外における特徴的詳細を捉えるフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-14T22:33:09Z) - TriPlaneNet: An Encoder for EG3D Inversion [1.9567015559455132]
NeRFをベースとしたGANは、人間の頭部の高分解能かつ高忠実な生成モデリングのための多くのアプローチを導入している。
2D GANインバージョンのための普遍的最適化に基づく手法の成功にもかかわらず、3D GANに適用された手法は、結果を新しい視点に外挿することができないかもしれない。
本稿では,EG3D生成モデルに提示された3面表現を直接利用することにより,両者のギャップを埋める高速な手法を提案する。
論文 参考訳(メタデータ) (2023-03-23T17:56:20Z) - High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization [51.878078860524795]
フォトリアリスティック・ノベルビューを合成可能な高忠実度3次元生成対向ネットワーク(GAN)インバージョン・フレームワークを提案する。
提案手法は,1枚の画像から高忠実度3Dレンダリングを可能にし,AI生成3Dコンテンツの様々な応用に期待できる。
論文 参考訳(メタデータ) (2022-11-28T18:59:52Z) - Vision Transformer for NeRF-Based View Synthesis from a Single Input
Image [49.956005709863355]
本稿では,グローバルな特徴と局所的な特徴を両立させ,表現力のある3D表現を実現することを提案する。
新たなビューを合成するために,学習した3次元表現に条件付き多層パーセプトロン(MLP)ネットワークを訓練し,ボリュームレンダリングを行う。
提案手法は,1つの入力画像のみから新しいビューを描画し,複数のオブジェクトカテゴリを1つのモデルで一般化することができる。
論文 参考訳(メタデータ) (2022-07-12T17:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。