論文の概要: MoGaFace: Momentum-Guided and Texture-Aware Gaussian Avatars for Consistent Facial Geometry
- arxiv url: http://arxiv.org/abs/2508.01218v1
- Date: Sat, 02 Aug 2025 06:25:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:21.765573
- Title: MoGaFace: Momentum-Guided and Texture-Aware Gaussian Avatars for Consistent Facial Geometry
- Title(参考訳): MoGaFace: 一貫した顔形状のためのモメンタムガイドとテクスチャ認識型ガウスアバター
- Authors: Yujian Liu, Linlang Cao, Chuang Chen, Fanyu Geng, Dongxu Shen, Peng Cao, Shidang Xu, Xiaoli Liu,
- Abstract要約: MoGaFaceは、顔の形状とテクスチャ特性を継続的に洗練する、3Dヘッドアバターモデリングフレームワークである。
MoGaFaceは高忠実な頭部アバター再構成を実現し、新規な合成品質を著しく向上させる。
- 参考スコア(独自算出の注目度): 3.0373043721834163
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing 3D head avatar reconstruction methods adopt a two-stage process, relying on tracked FLAME meshes derived from facial landmarks, followed by Gaussian-based rendering. However, misalignment between the estimated mesh and target images often leads to suboptimal rendering quality and loss of fine visual details. In this paper, we present MoGaFace, a novel 3D head avatar modeling framework that continuously refines facial geometry and texture attributes throughout the Gaussian rendering process. To address the misalignment between estimated FLAME meshes and target images, we introduce the Momentum-Guided Consistent Geometry module, which incorporates a momentum-updated expression bank and an expression-aware correction mechanism to ensure temporal and multi-view consistency. Additionally, we propose Latent Texture Attention, which encodes compact multi-view features into head-aware representations, enabling geometry-aware texture refinement via integration into Gaussians. Extensive experiments show that MoGaFace achieves high-fidelity head avatar reconstruction and significantly improves novel-view synthesis quality, even under inaccurate mesh initialization and unconstrained real-world settings.
- Abstract(参考訳): 既存の3Dヘッドアバター再構成法は、2段階のプロセスを採用しており、顔のランドマークから派生した追跡FLAMEメッシュに依存している。
しかしながら、推定メッシュと対象画像の誤配は、しばしば、最適なレンダリング品質と細かな視覚的詳細の損失をもたらす。
本稿では,ガウスレンダリングプロセスを通じて顔形状とテクスチャ特性を連続的に洗練する3次元頭部アバターモデリングフレームワークであるMoGaFaceを提案する。
推定FLAMEメッシュと対象画像との相違に対処するため,モーメントムガイド型一貫性幾何モジュールを導入し,時間的・多視点整合性を確保するために,モーメントム更新式バンクと式認識補正機構を組み込んだ。
さらに,コンパクトなマルチビュー特徴を頭部認識表現にエンコードし,ガウスへの統合による幾何学的テクスチャの洗練を可能にする潜在テクスチャアテンションを提案する。
MoGaFaceは、不正確なメッシュ初期化や制約のない実世界の設定下であっても、高忠実なアバター再構成を実現し、新規ビュー合成品質を著しく向上することを示す。
関連論文リスト
- TeGA: Texture Space Gaussian Avatars for High-Resolution Dynamic Head Modeling [52.87836237427514]
フォトリアルアバターは、テレプレゼンス、拡張現実、エンターテイメントにおける新興アプリケーションにおいて重要な要素であると見なされている。
本稿では,最先端の3Dヘッドアバターモデルを提案する。
論文 参考訳(メタデータ) (2025-05-08T22:10:27Z) - 3D Gaussian Splatting with Normal Information for Mesh Extraction and Improved Rendering [8.59572577251833]
ガウス関数から推定される符号距離関数の勾配を用いた新しい正規化法を提案する。
我々は、Mip-NeRF360、Tamps and Temples、Deep-Blendingなどのデータセットに対するアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2025-01-14T18:40:33Z) - Learning Topology Uniformed Face Mesh by Volume Rendering for Multi-view Reconstruction [40.45683488053611]
一貫性のあるトポロジにおける顔メッシュは、多くの顔関連アプリケーションの基盤となる。
トポロジを保存しながらメッシュ形状を直接最適化するメッシュボリュームレンダリング手法を提案する。
主要なイノベーションは、ボリュームレンダリングに必要な放射界をシミュレートするために、スパースメッシュ機能を周辺空間に広めることである。
論文 参考訳(メタデータ) (2024-04-08T15:25:50Z) - Hybrid Explicit Representation for Ultra-Realistic Head Avatars [55.829497543262214]
我々は,超現実的な頭部アバターを作成し,それをリアルタイムにレンダリングする新しい手法を提案する。
UVマップされた3Dメッシュは滑らかな表面のシャープでリッチなテクスチャを捉えるのに使われ、3Dガウス格子は複雑な幾何学構造を表現するために用いられる。
モデル化された結果が最先端のアプローチを上回る実験を行ないました。
論文 参考訳(メタデータ) (2024-03-18T04:01:26Z) - InvertAvatar: Incremental GAN Inversion for Generalized Head Avatars [40.10906393484584]
本稿では,複数フレームからの忠実度向上を目的としたアルゴリズムを用いて,アバター復元性能を向上させる新しいフレームワークを提案する。
本アーキテクチャでは,画素対応画像-画像変換を重要視し,観測空間と標準空間の対応を学習する必要性を緩和する。
提案手法は,1ショットと数ショットのアバターアニメーションタスクにおける最先端の性能を示す。
論文 参考訳(メタデータ) (2023-12-03T18:59:15Z) - Delicate Textured Mesh Recovery from NeRF via Adaptive Surface
Refinement [78.48648360358193]
画像からテクスチャ化された表面メッシュを生成する新しいフレームワークを提案する。
我々のアプローチは、NeRFを用いて幾何学とビュー依存の外観を効率的に初期化することから始まります。
ジオメトリと共同で外観を洗練し、テクスチャ画像に変換してリアルタイムレンダリングします。
論文 参考訳(メタデータ) (2023-03-03T17:14:44Z) - High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization [51.878078860524795]
フォトリアリスティック・ノベルビューを合成可能な高忠実度3次元生成対向ネットワーク(GAN)インバージョン・フレームワークを提案する。
提案手法は,1枚の画像から高忠実度3Dレンダリングを可能にし,AI生成3Dコンテンツの様々な応用に期待できる。
論文 参考訳(メタデータ) (2022-11-28T18:59:52Z) - Fast-GANFIT: Generative Adversarial Network for High Fidelity 3D Face
Reconstruction [76.1612334630256]
我々は、GAN(Generative Adversarial Networks)とDCNN(Deep Convolutional Neural Networks)の力を利用して、単一画像から顔のテクスチャと形状を再構築する。
3次元顔再構成を保存したフォトリアリスティックでアイデンティティに優れた結果を示し, 初めて, 高精度な顔テクスチャ再構成を実現する。
論文 参考訳(メタデータ) (2021-05-16T16:35:44Z) - Inverting Generative Adversarial Renderer for Face Reconstruction [58.45125455811038]
本稿では,GAR(Generative Adversa Renderer)について紹介する。
GARは、グラフィックルールに頼るのではなく、複雑な現実世界のイメージをモデル化することを学ぶ。
本手法は,複数顔再構成における最先端性能を実現する。
論文 参考訳(メタデータ) (2021-05-06T04:16:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。