論文の概要: Re-Nerfing: Improving Novel Views Synthesis through Novel Views Synthesis
- arxiv url: http://arxiv.org/abs/2312.02255v2
- Date: Wed, 17 Apr 2024 17:44:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 19:20:39.438133
- Title: Re-Nerfing: Improving Novel Views Synthesis through Novel Views Synthesis
- Title(参考訳): Re-Nerfing:新しいビュー合成による新しいビュー合成の改善
- Authors: Felix Tristram, Stefano Gasperini, Nassir Navab, Federico Tombari,
- Abstract要約: Re-Nerfingは単純で汎用的なマルチステージデータ拡張アプローチである。
利用可能なビューでNeRFをトレーニングした後、最適化されたNeRFを使用して、元のビューに関する擬似ビューを合成します。
また、原画像と疑似ビューの両方が不確実領域を隠蔽する第2のNeRFを訓練する。
- 参考スコア(独自算出の注目度): 80.3686833921072
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Radiance Fields (NeRFs) have shown remarkable novel view synthesis capabilities even in large-scale, unbounded scenes, albeit requiring hundreds of views or introducing artifacts in sparser settings. Their optimization suffers from shape-radiance ambiguities wherever only a small visual overlap is available. This leads to erroneous scene geometry and artifacts. In this paper, we propose Re-Nerfing, a simple and general multi-stage data augmentation approach that leverages NeRF's own view synthesis ability to address these limitations. With Re-Nerfing, we enhance the geometric consistency of novel views as follows: First, we train a NeRF with the available views. Then, we use the optimized NeRF to synthesize pseudo-views around the original ones with a view selection strategy to improve coverage and preserve view quality. Finally, we train a second NeRF with both the original images and the pseudo views masking out uncertain regions. Extensive experiments applying Re-Nerfing on various pipelines on the mip-NeRF 360 dataset, including Gaussian Splatting, provide valuable insights into the improvements achievable without external data or supervision, on denser and sparser input scenarios. Project page: https://renerfing.github.io
- Abstract(参考訳): ニューラル・ラジアンス・フィールド(Neural Radiance Fields、NeRF)は、数百のビューを必要とするにもかかわらず、大規模で無制限のシーンでも、スペーサー設定でアーティファクトを導入することで、目覚ましいビュー合成能力を示している。
それらの最適化は、小さな視覚的重なりしか持たない形状のあいまいさに悩まされる。
これは誤ったシーンの幾何学やアーティファクトに繋がる。
本稿では,これらの制約に対処するためのNeRF独自のビュー合成機能を活用する,シンプルで汎用的な多段階データ拡張手法であるRe-Nerfingを提案する。
Re-Nerfingでは、新しいビューの幾何学的整合性を高める。
そして、最適化されたNeRFを用いて、元のビューに関する擬似ビューをビュー選択戦略で合成し、カバレッジを改善し、ビュー品質を維持する。
最後に、原画像と疑似ビューの両方が不確実領域を隠蔽する第2のNeRFを訓練する。
Gaussian Splattingを含む、mip-NeRF 360データセット上のさまざまなパイプラインにRe-Nerfingを適用する大規模な実験は、より密集したスペーサー入力シナリオにおいて、外部データや監視なしで達成可能な改善に関する貴重な洞察を提供する。
プロジェクトページ: https://renerfing.github.io
関連論文リスト
- NeRF-VPT: Learning Novel View Representations with Neural Radiance
Fields via View Prompt Tuning [63.39461847093663]
本研究では,これらの課題に対処するための新しいビュー合成手法であるNeRF-VPTを提案する。
提案するNeRF-VPTは、先行レンダリング結果から得られたRGB情報を、その後のレンダリングステージのインストラクティブな視覚的プロンプトとして機能するカスケーディングビュープロンプトチューニングパラダイムを用いている。
NeRF-VPTは、追加のガイダンスや複雑なテクニックに頼ることなく、トレーニングステージ毎に前のステージレンダリングからRGBデータをサンプリングするだけである。
論文 参考訳(メタデータ) (2024-03-02T22:08:10Z) - PNeRFLoc: Visual Localization with Point-based Neural Radiance Fields [54.8553158441296]
統一された点ベース表現に基づく新しい視覚的ローカライゼーションフレームワーク PNeRFLoc を提案する。
一方、PNeRFLocは2次元特徴点と3次元特徴点をマッチングして初期ポーズ推定をサポートする。
一方、レンダリングベースの最適化を用いた新しいビュー合成によるポーズ改善も実現している。
論文 参考訳(メタデータ) (2023-12-17T08:30:00Z) - NeRFVS: Neural Radiance Fields for Free View Synthesis via Geometry
Scaffolds [60.1382112938132]
室内における自由ナビゲーションを可能にする新しいニューラル放射場(NeRF)法であるNeRFVSを提案する。
NeRFは、トレーニングビューと大きく異なる新規ビューに苦しむ一方で、入力ビューと同様の新規ビューの画像のレンダリングにおいて、印象的なパフォーマンスを実現している。
論文 参考訳(メタデータ) (2023-04-13T06:40:08Z) - Improving Neural Radiance Fields with Depth-aware Optimization for Novel
View Synthesis [12.3338393483795]
SfMNeRFは,新規な視点の合成と3次元シーン形状の再構成を行う手法である。
SfMNeRFは、エピポーラ性、光度整合性、深さの滑らかさ、および3Dシーン構造を明示的に再構成するためにマッチ位置制約を用いる。
2つの公開データセットの実験では、SfMNeRFが最先端のアプローチを上回ることが示されている。
論文 参考訳(メタデータ) (2023-04-11T13:37:17Z) - ActiveNeRF: Learning where to See with Uncertainty Estimation [36.209200774203005]
近年,Neural Radiance Fields (NeRF) は,3次元シーンの再構成や,スパース2次元画像からの新規ビューの合成に有望な性能を示した。
本稿では,制約のある入力予算で3Dシーンをモデル化することを目的とした,新しい学習フレームワークであるActiveNeRFを提案する。
論文 参考訳(メタデータ) (2022-09-18T12:09:15Z) - Cascaded and Generalizable Neural Radiance Fields for Fast View
Synthesis [35.035125537722514]
ビュー合成のためのカスケードおよび一般化可能なニューラル放射場法であるCG-NeRFを提案する。
DTUデータセットの複数の3DシーンでCG-NeRFをトレーニングする。
CG-NeRFは、様々な合成および実データに対して、最先端の一般化可能なニューラルネットワークレンダリング手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-08-09T12:23:48Z) - View Synthesis with Sculpted Neural Points [64.40344086212279]
暗黙の神経表現は印象的な視覚的品質を達成したが、計算効率に欠点がある。
本稿では,点雲を用いたビュー合成を行う新しい手法を提案する。
レンダリング速度を100倍以上速くしながら、NeRFよりも視覚的品質を向上する最初のポイントベース手法である。
論文 参考訳(メタデータ) (2022-05-12T03:54:35Z) - InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering [55.70938412352287]
ニューラルな暗黙表現に基づく数ショットの新規ビュー合成のための情報理論正規化手法を提案する。
提案手法は,不十分な視点で発生する潜在的な復元の不整合を最小化する。
複数の標準ベンチマークにおいて,既存のニューラルビュー合成手法と比較して一貫した性能向上を実現している。
論文 参考訳(メタデータ) (2021-12-31T11:56:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。