論文の概要: Re-Nerfing: Improving Novel View Synthesis through Novel View Synthesis
- arxiv url: http://arxiv.org/abs/2312.02255v3
- Date: Wed, 28 Aug 2024 12:43:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 21:19:05.241702
- Title: Re-Nerfing: Improving Novel View Synthesis through Novel View Synthesis
- Title(参考訳): Re-Nerfing:新しいビュー合成による新しいビュー合成の改善
- Authors: Felix Tristram, Stefano Gasperini, Nassir Navab, Federico Tombari,
- Abstract要約: 最近のニューラルレンダリングや、NeRFsやGaussian Splattingのような再構成技術は、目覚ましいビュー合成能力を示している。
画像が少ないほど、これらの手法は、基礎となる3D幾何学を正しく三角測量できないため、失敗し始めます。
本稿では,新規なビュー合成自体を活用するシンプルで汎用的なアドオン手法であるRe-Nerfingを提案する。
- 参考スコア(独自算出の注目度): 80.3686833921072
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent neural rendering and reconstruction techniques, such as NeRFs or Gaussian Splatting, have shown remarkable novel view synthesis capabilities but require hundreds of images of the scene from diverse viewpoints to render high-quality novel views. With fewer images available, these methods start to fail since they can no longer correctly triangulate the underlying 3D geometry and converge to a non-optimal solution. These failures can manifest as floaters or blurry renderings in sparsely observed areas of the scene. In this paper, we propose Re-Nerfing, a simple and general add-on approach that leverages novel view synthesis itself to tackle this problem. Using an already trained NVS method, we render novel views between existing ones and augment the training data to optimize a second model. This introduces additional multi-view constraints and allows the second model to converge to a better solution. With Re-Nerfing we achieve significant improvements upon multiple pipelines based on NeRF and Gaussian-Splatting in sparse view settings of the mip-NeRF 360 and LLFF datasets. Notably, Re-Nerfing does not require prior knowledge or extra supervision signals, making it a flexible and practical add-on.
- Abstract(参考訳): 近年のNeRFやガウス・スプラッティングのようなニューラルレンダリングや再構成技術は目覚ましいビュー合成能力を示しているが、高品質なビューを描画するためには多様な視点から数百のシーンの画像が必要である。
画像が少ないと、これらの手法は、基礎となる3次元幾何学を正しく三角測量できず、最適でない解に収束できなくなるため、失敗し始める。
これらの失敗は、シーンのわずかに観察された領域で、フローターやぼやけたレンダリングとして現れる。
本稿では,新規なビュー合成自体を活用するシンプルで汎用的なアドオン手法であるRe-Nerfingを提案する。
すでにトレーニング済みのNVSメソッドを使用して、既存のビュー間で新しいビューを描画し、トレーニングデータを拡張して第2モデルの最適化を行う。
これにより、追加のマルチビュー制約が導入され、第二モデルはより良いソリューションに収束する。
Re-Nerfingでは、mip-NeRF 360とLLFFデータセットのスパースビュー設定において、NeRFとGaussian-Splattingに基づく複数のパイプラインで大幅な改善を実現しています。
特に、Re-Nerfingは事前の知識や余分な監視信号を必要としないため、柔軟で実用的なアドオンである。
関連論文リスト
- NeRF-VPT: Learning Novel View Representations with Neural Radiance
Fields via View Prompt Tuning [63.39461847093663]
本研究では,これらの課題に対処するための新しいビュー合成手法であるNeRF-VPTを提案する。
提案するNeRF-VPTは、先行レンダリング結果から得られたRGB情報を、その後のレンダリングステージのインストラクティブな視覚的プロンプトとして機能するカスケーディングビュープロンプトチューニングパラダイムを用いている。
NeRF-VPTは、追加のガイダンスや複雑なテクニックに頼ることなく、トレーニングステージ毎に前のステージレンダリングからRGBデータをサンプリングするだけである。
論文 参考訳(メタデータ) (2024-03-02T22:08:10Z) - PNeRFLoc: Visual Localization with Point-based Neural Radiance Fields [54.8553158441296]
統一された点ベース表現に基づく新しい視覚的ローカライゼーションフレームワーク PNeRFLoc を提案する。
一方、PNeRFLocは2次元特徴点と3次元特徴点をマッチングして初期ポーズ推定をサポートする。
一方、レンダリングベースの最適化を用いた新しいビュー合成によるポーズ改善も実現している。
論文 参考訳(メタデータ) (2023-12-17T08:30:00Z) - NeRFVS: Neural Radiance Fields for Free View Synthesis via Geometry
Scaffolds [60.1382112938132]
室内における自由ナビゲーションを可能にする新しいニューラル放射場(NeRF)法であるNeRFVSを提案する。
NeRFは、トレーニングビューと大きく異なる新規ビューに苦しむ一方で、入力ビューと同様の新規ビューの画像のレンダリングにおいて、印象的なパフォーマンスを実現している。
論文 参考訳(メタデータ) (2023-04-13T06:40:08Z) - Improving Neural Radiance Fields with Depth-aware Optimization for Novel
View Synthesis [12.3338393483795]
SfMNeRFは,新規な視点の合成と3次元シーン形状の再構成を行う手法である。
SfMNeRFは、エピポーラ性、光度整合性、深さの滑らかさ、および3Dシーン構造を明示的に再構成するためにマッチ位置制約を用いる。
2つの公開データセットの実験では、SfMNeRFが最先端のアプローチを上回ることが示されている。
論文 参考訳(メタデータ) (2023-04-11T13:37:17Z) - ActiveNeRF: Learning where to See with Uncertainty Estimation [36.209200774203005]
近年,Neural Radiance Fields (NeRF) は,3次元シーンの再構成や,スパース2次元画像からの新規ビューの合成に有望な性能を示した。
本稿では,制約のある入力予算で3Dシーンをモデル化することを目的とした,新しい学習フレームワークであるActiveNeRFを提案する。
論文 参考訳(メタデータ) (2022-09-18T12:09:15Z) - Cascaded and Generalizable Neural Radiance Fields for Fast View
Synthesis [35.035125537722514]
ビュー合成のためのカスケードおよび一般化可能なニューラル放射場法であるCG-NeRFを提案する。
DTUデータセットの複数の3DシーンでCG-NeRFをトレーニングする。
CG-NeRFは、様々な合成および実データに対して、最先端の一般化可能なニューラルネットワークレンダリング手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-08-09T12:23:48Z) - View Synthesis with Sculpted Neural Points [64.40344086212279]
暗黙の神経表現は印象的な視覚的品質を達成したが、計算効率に欠点がある。
本稿では,点雲を用いたビュー合成を行う新しい手法を提案する。
レンダリング速度を100倍以上速くしながら、NeRFよりも視覚的品質を向上する最初のポイントベース手法である。
論文 参考訳(メタデータ) (2022-05-12T03:54:35Z) - InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering [55.70938412352287]
ニューラルな暗黙表現に基づく数ショットの新規ビュー合成のための情報理論正規化手法を提案する。
提案手法は,不十分な視点で発生する潜在的な復元の不整合を最小化する。
複数の標準ベンチマークにおいて,既存のニューラルビュー合成手法と比較して一貫した性能向上を実現している。
論文 参考訳(メタデータ) (2021-12-31T11:56:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。