論文の概要: CityTFT: Temporal Fusion Transformer for Urban Building Energy Modeling
- arxiv url: http://arxiv.org/abs/2312.02375v1
- Date: Mon, 4 Dec 2023 22:19:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-06 17:27:33.935537
- Title: CityTFT: Temporal Fusion Transformer for Urban Building Energy Modeling
- Title(参考訳): CityTFT:都市ビルエネルギーモデリングのための時間核融合変換器
- Authors: Ting-Yu Dai, Dev Niyogi, Zoltan Nagy
- Abstract要約: 本研究では,都市環境におけるエネルギー需要を正確にモデル化するデータ駆動型UBEMフレームワークであるCityTFTを提案する。
CityTFT は F1 スコアが 99.98 %、RMSE の負荷が 13.57 kWh と予測できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Urban Building Energy Modeling (UBEM) is an emerging method to investigate
urban design and energy systems against the increasing energy demand at urban
and neighborhood levels. However, current UBEM methods are mostly physic-based
and time-consuming in multiple climate change scenarios. This work proposes
CityTFT, a data-driven UBEM framework, to accurately model the energy demands
in urban environments. With the empowerment of the underlying TFT framework and
an augmented loss function, CityTFT could predict heating and cooling triggers
in unseen climate dynamics with an F1 score of 99.98 \% while RMSE of loads of
13.57 kWh.
- Abstract(参考訳): 都市建築エネルギーモデリング(Urban Building Energy Modeling, UBEM)は、都市部におけるエネルギー需要の増加に対する都市設計とエネルギーシステムの研究手法である。
しかし、現在のUBEM法は、主に物理に基づくものであり、複数の気候変動シナリオで時間がかかる。
本研究では,都市環境におけるエネルギー需要を正確にモデル化するためのデータ駆動型UBEMフレームワークであるCityTFTを提案する。
基礎となるTFTフレームワークの強化と損失関数の強化により、CityTFTはF1のスコアが99.98 \%、RMSEの負荷が13.57 kWhの未観測の気候力学における加熱と冷却のトリガを予測することができた。
関連論文リスト
- Adopting Explainable-AI to investigate the impact of urban morphology design on energy and environmental performance in dry-arid climates [0.0]
本研究では,都市建築エネルギーモデリング(UBEM)と機械学習(ML)と説明可能なAI技術を組み合わせた都市形態評価手法を提案する。
テヘランの密集した都市景観をケーススタディとして、この研究は30の形態パラメータが主要なエネルギー指標に与える影響を評価し、ランク付けする。
その結果、建築形態、窓と壁の比率、商業比率がエネルギー効率に影響を与える最も重要なパラメータであることが判明した。
論文 参考訳(メタデータ) (2024-12-13T09:19:49Z) - A Machine Learning Approach for the Efficient Estimation of Ground-Level Air Temperature in Urban Areas [6.7236795813629]
都市で発生する都市ヒートアイランド(UHI)現象は、その熱応力を増大させ、より持続可能な都市を実現するための障害の1つである。
本研究では,都市域の空間的・気象的変数と街路レベルの空気温度を関連付けるために,イメージ・ツー・イメージ・ディープ・ニューラル・ネットワーク(DNN)の有用性を検討する。
街路レベルでの空気温度は、特定のユースケースに対して空間的にも時間的にも推定され、既存のよく確立された数値モデルと比較される。
論文 参考訳(メタデータ) (2024-11-05T15:05:23Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - Quantifying and Predicting Residential Building Flexibility Using
Machine Learning Methods [1.3812010983144802]
より多くの分散型エネルギー資源が建物に設置されるにつれて、グリッドに柔軟性を提供する可能性が高まっている。
建物が提供する柔軟性を利用するには、アグリゲータやシステムオペレーターが柔軟性を定量化し予測する必要がある。
本稿ではまず,2つの相補的フレキシビリティ指標(電力とエネルギーの柔軟性)を提案し,次に主流の機械学習モデルについて検討する。
論文 参考訳(メタデータ) (2024-03-04T01:44:19Z) - Global Transformer Architecture for Indoor Room Temperature Forecasting [49.32130498861987]
本研究は,多室ビルにおける室内温度予測のためのグローバルトランスフォーマーアーキテクチャを提案する。
エネルギー消費を最適化し、HVACシステムに関連する温室効果ガス排出を削減することを目的としている。
本研究は,マルチルームビルにおける室内温度予測にトランスフォーマーアーキテクチャを適用した最初の事例である。
論文 参考訳(メタデータ) (2023-10-31T14:09:32Z) - Climate-sensitive Urban Planning through Optimization of Tree Placements [55.11389516857789]
気候変動は、熱波を含む多くの極端な気象事象の強度と頻度を増している。
最も有望な戦略の1つは、街路樹の恩恵を利用して歩行者レベルの環境を冷やすことである。
物理シミュレーションでは、樹木の放射的および熱的影響が人間の熱的快適性に与える影響を推定できるが、高い計算コストが生じる。
我々は,屋外の熱的快適さの駆動因子である点平均放射温度を,様々な時間スケールでシミュレーションするためにニューラルネットワークを用いた。
論文 参考訳(メタデータ) (2023-10-09T13:07:23Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
エネルギー予測は、電力グリッドディスパッチのようなその後のタスクのコストを最小化することを目的としている。
本稿では,大規模負荷データセットを収集し,再生可能エネルギーデータセットを新たにリリースした。
評価指標の異なるレベルにおいて,21種類の予測手法を用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-07-14T06:50:02Z) - Pedestrian Wind Factor Estimation in Complex Urban Environments [0.0]
都市計画立案者や政策立案者は、より密集した都市環境においてより人口の多い都市のために、住みやすく楽しい都市を作るという課題に直面している。
都市マイクロ気候は、現在と将来における都市空間の質を定義する上で重要な役割を担っているが、初期の都市設計と計画プロセスにおける風力マイクロ気候評価の統合は依然として課題である。
この研究は、複雑な都市環境におけるリアルタイムな歩行者風の快適さ推定のためのデータ駆動ワークフローを開発する。
論文 参考訳(メタデータ) (2021-10-06T01:09:30Z) - Times Series Forecasting for Urban Building Energy Consumption Based on
Graph Convolutional Network [20.358180125750046]
建設業はアメリカにおけるエネルギー消費の40%以上を占めている。
UBEMはエネルギー効率の良いコミュニティの設計を支援する基盤である。
データ駆動型モデル統合工学または物理知識は、都市建設エネルギーシミュレーションを大幅に改善することができる。
論文 参考訳(メタデータ) (2021-05-27T19:02:04Z) - No MCMC for me: Amortized sampling for fast and stable training of
energy-based models [62.1234885852552]
エネルギーベースモデル(EBM)は、不確実性を表す柔軟で魅力的な方法である。
本稿では,エントロピー規則化ジェネレータを用いてEMMを大規模に訓練し,MCMCサンプリングを記憶する簡単な方法を提案する。
次に、最近提案されたジョイント・エナジー・モデル(JEM)に推定器を適用し、元の性能と高速で安定したトレーニングとを一致させる。
論文 参考訳(メタデータ) (2020-10-08T19:17:20Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
モデル同定のコストを削減するために,ニューラルネットワークに基づくデータ駆動制御アルゴリズムを提案する。
イタリアにある10の独立したゾーンを持つ2階建ての建物で、学習と制御のアルゴリズムを検証する。
論文 参考訳(メタデータ) (2020-01-22T00:51:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。