論文の概要: mLoRA: Fine-Tuning LoRA Adapters via Highly-Efficient Pipeline Parallelism in Multiple GPUs
- arxiv url: http://arxiv.org/abs/2312.02515v2
- Date: Wed, 18 Sep 2024 13:07:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 23:46:22.345022
- Title: mLoRA: Fine-Tuning LoRA Adapters via Highly-Efficient Pipeline Parallelism in Multiple GPUs
- Title(参考訳): mLoRA: 複数のGPUにおける高効率パイプライン並列化による微調整LORAアダプタ
- Authors: Zhengmao Ye, Dengchun Li, Zetao Hu, Tingfeng Lan, Jian Sha, Sicong Zhang, Lei Duan, Jie Zuo, Hui Lu, Yuanchun Zhou, Mingjie Tang,
- Abstract要約: Low-Rank Adaptation (LoRA) はパラメータ効率のよい微調整法で、ベースLSMを複数の下流タスクに適応させるのに使われる。
LoRAプラットフォームにより、開発者は複数のモデルを微調整し、さまざまなドメイン固有のアプリケーションを同時に開発できる。
既存のモデル並列化スキームは、複数のLoRAタスクをトレーニングする際に、高い通信オーバーヘッドと非効率なGPU利用に悩まされる。
- 参考スコア(独自算出の注目度): 5.735411578779657
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transformer-based, pre-trained large language models (LLMs) have demonstrated outstanding performance across diverse domains, particularly in the emerging {\em pretrain-then-finetune} paradigm. Low-Rank Adaptation (LoRA), a parameter-efficient fine-tuning method, is commonly used to adapt a base LLM to multiple downstream tasks. Further, LLM platforms enable developers to fine-tune multiple models and develop various domain-specific applications simultaneously. However, existing model parallelism schemes suffer from high communication overhead and inefficient GPU utilization when training multiple LoRA tasks across GPUs and machines. In this paper, we present mLoRA, a parallelism-efficient fine-tuning system designed for training multiple LoRA across GPUs and machines. mLoRA introduces a novel LoRA-aware pipeline parallelism scheme that efficiently pipelines independent LoRA adapters and their distinct fine-tuning stages across GPUs and machines, along with a new LoRA-efficient operator to enhance GPU utilization during pipelined LoRA training. Our extensive evaluation shows that mLoRA can significantly reduce average fine-tuning task completion time, e.g., by 30\%, compared to state-of-the-art methods like FSDP. More importantly, mLoRA enables simultaneous fine-tuning of larger models, e.g., two Llama-2-13B models on four NVIDIA RTX A6000 48GB GPUs, which is not feasible for FSDP due to high memory requirements. Hence, mLoRA not only increases fine-tuning efficiency but also makes it more accessible on cost-effective GPUs. mLoRA has been deployed in AntGroup's production environment.
- Abstract(参考訳): トランスフォーマーベースで事前訓練された大規模言語モデル (LLM) は、特に新興の {\em pretrain-then-finetune} パラダイムにおいて、様々な領域で顕著な性能を示している。
Low-Rank Adaptation (LoRA) はパラメータ効率のよい微調整法で、ベースLSMを複数の下流タスクに適応させるのに使われる。
さらに、LLMプラットフォームにより、開発者は複数のモデルを微調整し、様々なドメイン固有のアプリケーションを同時に開発できる。
しかし、既存のモデル並列化スキームは、GPUやマシン間で複数のLoRAタスクをトレーニングする際に、高い通信オーバーヘッドと非効率なGPU利用に悩まされている。
本稿では、GPUやマシン間で複数のLoRAをトレーニングするための並列処理効率の良い微調整システムであるmLoRAを提案する。
mLoRAは、独立したLoRAアダプタとGPUとマシン間で異なる微調整ステージを効率的にパイプラインする新しいLoRA対応パイプライン並列化スキームと、パイプライン化されたLoRAトレーニング中のGPU使用率を高めるための新しいLoRA効率の演算子を導入している。
FSDP などの最先端手法と比較して,mLoRA は平均細調整タスク完了時間を 30 % 削減できることを示す。
さらに重要なのは、mLoRAは4つのNVIDIA RTX A6000 48GB GPU上で2つのLlama-2-13Bモデルを同時に微調整できることだ。
したがって、mLoRAは微調整効率を向上するだけでなく、コスト効率のよいGPUでもアクセスしやすい。
mLoRAはAntGroupのプロダクション環境にデプロイされている。
関連論文リスト
- Retrieval-Augmented Mixture of LoRA Experts for Uploadable Machine Learning [57.36978335727009]
Low-Rank Adaptation (LoRA)は、大規模言語モデル(LLM)を微調整する効率的な方法を提供する。
本稿では,入力プロンプトに基づいて複数のLoRAを適応的に検索・構成するフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-24T05:24:41Z) - LoRA Land: 310 Fine-tuned LLMs that Rival GPT-4, A Technical Report [3.304521604464247]
ローランク適応(ローランク適応、LoRA)は、最も広く採用されている手法の一つである。
大規模言語モデル(LLM)の効率的な微細チューニング(PEFT)
本研究の目的は,LoRAで微調整されたLLMを実世界の応用に適用し,学習の可能性を評価することである。
論文 参考訳(メタデータ) (2024-04-29T04:01:45Z) - MixLoRA: Enhancing Large Language Models Fine-Tuning with LoRA-based Mixture of Experts [3.6301530893494127]
MixLoRAは、リソース効率の良いスパースMoEモデルを構築するためのアプローチである。
評価の結果,MixLoRAはマルチタスク学習シナリオにおける最先端PEFT法と比較して約9%精度が向上していることがわかった。
論文 参考訳(メタデータ) (2024-04-22T02:15:52Z) - Run LoRA Run: Faster and Lighter LoRA Implementations [50.347242693025336]
LoRAは、線形層に低ランクアダプタを導入することにより、ニューラルネットワーク内のトレーニング可能なパラメータの数を減らすテクニックである。
本稿では,LoRAの効率的な実装のためのRunLoRAフレームワークを提案する。
実験は、言語モデリングネットワーク上で最大28%のスピードアップを示す。
論文 参考訳(メタデータ) (2023-12-06T10:54:34Z) - MultiLoRA: Democratizing LoRA for Better Multi-Task Learning [20.750808913757396]
LoRAは、特定のタスクにLLMを適用する際に、顕著なリソース効率と同等のパフォーマンスを達成する。
LoRAは少数のトップ特異ベクトルに支配され、微調整はより重要でないユニタリ変換の集合に分解される。
我々は,LoRAで観測されるトップ特異ベクトルの優位性を低減し,マルチタスク適応性を向上するMultiLoRAを提案する。
論文 参考訳(メタデータ) (2023-11-20T02:59:18Z) - S-LoRA: Serving Thousands of Concurrent LoRA Adapters [59.490751234925206]
パラメータ効率のよい微調整法であるLoRA(Lo-Rank Adaptation)は、ベースモデルを複数のタスクに適応させるためによく用いられる。
本稿では,多数のLoRAアダプタのスケーラブルな提供を目的としたシステムであるS-LoRAを提案する。
論文 参考訳(メタデータ) (2023-11-06T17:26:17Z) - NOLA: Compressing LoRA using Linear Combination of Random Basis [22.76088132446952]
我々は、ロラに存在するランク1の下界を克服するNOLAを導入する。
NOLAは、ランク1のLoRAと比較してパラメータ数がはるかに少ないLoRAモデルと同様に、最高の圧縮LoRAをアーカイブできる。
論文 参考訳(メタデータ) (2023-10-04T03:30:24Z) - FusionAI: Decentralized Training and Deploying LLMs with Massive
Consumer-Level GPUs [57.12856172329322]
我々は、巨大な未使用のコンシューマレベルのGPUをアンロックする分散システムを構想する。
このシステムは、CPUとGPUメモリの制限、ネットワーク帯域幅の低さ、ピアとデバイスの多様性など、重要な課題に直面している。
論文 参考訳(メタデータ) (2023-09-03T13:27:56Z) - CA-LoRA: Adapting Existing LoRA for Compressed LLMs to Enable Efficient Multi-Tasking on Personal Devices [78.16679232748196]
本稿では,Large Language Models (LLM) を他のタスクに転送するための圧縮対応 LoRA (CA-LoRA) フレームワークを提案する。
実験の結果,CA-LoRAは圧縮LDMに適用したバニラロラ法よりも優れていた。
CA-LoRAのソースコードはhttps://github.com/thunlp/CA-LoRAで公開されている。
論文 参考訳(メタデータ) (2023-07-15T04:37:11Z) - LoRA: Low-Rank Adaptation of Large Language Models [71.75808607987281]
Low-Rank Adaptation (LoRA)はトレーニング済みモデルの重みを凍結し、トレーニング可能な階数分解をTransformerアーキテクチャの各層に注入する。
GPT-3では、LoRAはトレーニング可能なパラメータの数を1万倍に減らし、計算ハードウェアの要求をフル微調整の3倍に削減できる。
論文 参考訳(メタデータ) (2021-06-17T17:37:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。