Panoptica -- instance-wise evaluation of 3D semantic and instance
segmentation maps
- URL: http://arxiv.org/abs/2312.02608v1
- Date: Tue, 5 Dec 2023 09:34:56 GMT
- Title: Panoptica -- instance-wise evaluation of 3D semantic and instance
segmentation maps
- Authors: Florian Kofler, Hendrik M\"oller, Josef A. Buchner, Ezequiel de la
Rosa, Ivan Ezhov, Marcel Rosier, Isra Mekki, Suprosanna Shit, Moritz Negwer,
Rami Al-Maskari, Ali Ert\"urk, Shankeeth Vinayahalingam, Fabian Isensee,
Sarthak Pati, Daniel Rueckert, Jan S. Kirschke, Stefan K. Ehrlich, Annika
Reinke, Bjoern Menze, Benedikt Wiestler, Marie Piraud
- Abstract summary: panoptica is a versatile and performance-optimized package for computing instance-wise segmentation quality metrics from 2D and 3D segmentation maps.
panoptica is open-source, implemented in Python, and accompanied by comprehensive documentation and tutorials.
- Score: 9.140078680017046
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces panoptica, a versatile and performance-optimized
package designed for computing instance-wise segmentation quality metrics from
2D and 3D segmentation maps. panoptica addresses the limitations of existing
metrics and provides a modular framework that complements the original
intersection over union-based panoptic quality with other metrics, such as the
distance metric Average Symmetric Surface Distance. The package is open-source,
implemented in Python, and accompanied by comprehensive documentation and
tutorials. panoptica employs a three-step metrics computation process to cover
diverse use cases. The efficacy of panoptica is demonstrated on various
real-world biomedical datasets, where an instance-wise evaluation is
instrumental for an accurate representation of the underlying clinical task.
Overall, we envision panoptica as a valuable tool facilitating in-depth
evaluation of segmentation methods.
Related papers
- View-Consistent Hierarchical 3D Segmentation Using Ultrametric Feature Fields [52.08335264414515]
We learn a novel feature field within a Neural Radiance Field (NeRF) representing a 3D scene.
Our method takes view-inconsistent multi-granularity 2D segmentations as input and produces a hierarchy of 3D-consistent segmentations as output.
We evaluate our method and several baselines on synthetic datasets with multi-view images and multi-granular segmentation, showcasing improved accuracy and viewpoint-consistency.
arXiv Detail & Related papers (2024-05-30T04:14:58Z) - Instance-aware 3D Semantic Segmentation powered by Shape Generators and
Classifiers [28.817905887080293]
We propose a novel instance-aware approach for 3D semantic segmentation.
Our method combines several geometry processing tasks supervised at instance-level to promote the consistency of the learned feature representation.
arXiv Detail & Related papers (2023-11-21T02:14:16Z) - LISNeRF Mapping: LiDAR-based Implicit Mapping via Semantic Neural Fields for Large-Scale 3D Scenes [2.822816116516042]
Large-scale semantic mapping is crucial for outdoor autonomous agents to fulfill high-level tasks such as planning and navigation.
This paper proposes a novel method for large-scale 3D semantic reconstruction through implicit representations from posed LiDAR measurements alone.
arXiv Detail & Related papers (2023-11-04T03:55:38Z) - Volumetric Semantically Consistent 3D Panoptic Mapping [77.13446499924977]
We introduce an online 2D-to-3D semantic instance mapping algorithm aimed at generating semantic 3D maps suitable for autonomous agents in unstructured environments.
It introduces novel ways of integrating semantic prediction confidence during mapping, producing semantic and instance-consistent 3D regions.
The proposed method achieves accuracy superior to the state of the art on public large-scale datasets, improving on a number of widely used metrics.
arXiv Detail & Related papers (2023-09-26T08:03:10Z) - Panoptic-PHNet: Towards Real-Time and High-Precision LiDAR Panoptic
Segmentation via Clustering Pseudo Heatmap [9.770808277353128]
We propose a fast and high-performance LiDAR-based framework, referred to as Panoptic-PHNet.
We introduce a clustering pseudo heatmap as a new paradigm, which, followed by a center grouping module, yields instance centers for efficient clustering.
For backbone design, we fuse the fine-grained voxel features and the 2D Bird's Eye View (BEV) features with different receptive fields to utilize both detailed and global information.
arXiv Detail & Related papers (2022-05-14T08:16:13Z) - Neural Jacobian Fields: Learning Intrinsic Mappings of Arbitrary Meshes [38.157373733083894]
This paper introduces a framework designed to accurately predict piecewise linear mappings of arbitrary meshes via a neural network.
The framework is based on reducing the neural aspect to a prediction of a matrix for a single point, conditioned on a global shape descriptor.
By operating in the intrinsic gradient domain of each individual mesh, it allows the framework to predict highly-accurate mappings.
arXiv Detail & Related papers (2022-05-05T19:51:13Z) - PointInst3D: Segmenting 3D Instances by Points [136.7261709896713]
We propose a fully-convolutional 3D point cloud instance segmentation method that works in a per-point prediction fashion.
We find the key to its success is assigning a suitable target to each sampled point.
Our approach achieves promising results on both ScanNet and S3DIS benchmarks.
arXiv Detail & Related papers (2022-04-25T02:41:46Z) - Sparse Instance Activation for Real-Time Instance Segmentation [72.23597664935684]
We propose a conceptually novel, efficient, and fully convolutional framework for real-time instance segmentation.
SparseInst has extremely fast inference speed and achieves 40 FPS and 37.9 AP on the COCO benchmark.
arXiv Detail & Related papers (2022-03-24T03:15:39Z) - Scaling up Multi-domain Semantic Segmentation with Sentence Embeddings [81.09026586111811]
We propose an approach to semantic segmentation that achieves state-of-the-art supervised performance when applied in a zero-shot setting.
This is achieved by replacing each class label with a vector-valued embedding of a short paragraph that describes the class.
The resulting merged semantic segmentation dataset of over 2 Million images enables training a model that achieves performance equal to that of state-of-the-art supervised methods on 7 benchmark datasets.
arXiv Detail & Related papers (2022-02-04T07:19:09Z) - Learn to Learn Metric Space for Few-Shot Segmentation of 3D Shapes [17.217954254022573]
We introduce a meta-learning-based method for few-shot 3D shape segmentation where only a few labeled samples are provided for the unseen classes.
We demonstrate the superior performance of our proposed on the ShapeNet part dataset under the few-shot scenario, compared with well-established baseline and state-of-the-art semi-supervised methods.
arXiv Detail & Related papers (2021-07-07T01:47:00Z) - PointFlow: Flowing Semantics Through Points for Aerial Image
Segmentation [96.76882806139251]
We propose a point-wise affinity propagation module based on the Feature Pyramid Network (FPN) framework, named PointFlow.
Rather than dense affinity learning, a sparse affinity map is generated upon selected points between the adjacent features.
Experimental results on three different aerial segmentation datasets suggest that the proposed method is more effective and efficient than state-of-the-art general semantic segmentation methods.
arXiv Detail & Related papers (2021-03-11T09:42:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.