From Dual Unitarity to Generic Quantum Operator Spreading
- URL: http://arxiv.org/abs/2210.13490v3
- Date: Wed, 3 May 2023 14:51:30 GMT
- Title: From Dual Unitarity to Generic Quantum Operator Spreading
- Authors: Michael A. Rampp, Roderich Moessner, and Pieter W. Claeys
- Abstract summary: We study the effect of weakly broken dual-unitarity on the spreading of local operators.
We find that the butterfly velocity and diffusion constant are determined by a small set of microscopic quantities.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dual-unitary circuits are paradigmatic examples of exactly solvable yet
chaotic quantum many-body systems, but solvability naturally goes along with a
degree of non-generic behaviour. By investigating the effect of weakly broken
dual-unitarity on the spreading of local operators we study whether, and how,
small deviations from dual-unitarity recover fully generic many-body dynamics.
We present a discrete path-integral formula for the out-of-time-order
correlator and use it to recover a butterfly velocity smaller than the
light-cone velocity, $v_B < v_{LC}$ , and a diffusively broadening operator
front, two generic features of ergodic quantum spin chains absent in
dual-unitary circuit dynamics. We find that the butterfly velocity and
diffusion constant are determined by a small set of microscopic quantities and
that the operator entanglement of the gates plays a crucial role.
Related papers
- Observation of disorder-free localization and efficient disorder averaging on a quantum processor [117.33878347943316]
We implement an efficient procedure on a quantum processor, leveraging quantum parallelism, to efficiently sample over all disorder realizations.
We observe localization without disorder in quantum many-body dynamics in one and two dimensions.
arXiv Detail & Related papers (2024-10-09T05:28:14Z) - Fock-space delocalization and the emergence of the Porter-Thomas distribution from dual-unitary dynamics [0.0]
chaotic dynamics of quantum many-body systems are expected to quickly randomize any structured initial state.
We study the spreading of an initial product state in Hilbert space under dual-unitary dynamics.
arXiv Detail & Related papers (2024-08-05T18:00:03Z) - Quantum information spreading in generalised dual-unitary circuits [44.99833362998488]
We show that local operators spread at the speed of light as in dual-unitary circuits.
We use these properties to find a closed-form expression for the entanglement membrane in these circuits.
arXiv Detail & Related papers (2023-12-05T18:09:27Z) - Dispersive Non-reciprocity between a Qubit and a Cavity [24.911532779175175]
We present an experimental study of a non-reciprocal dispersive-type interaction between a transmon qubit and a superconducting cavity.
We show that the qubit-cavity dynamics is well-described in a wide parameter regime by a simple non-reciprocal master-equation model.
arXiv Detail & Related papers (2023-07-07T17:19:18Z) - Autonomous coherence protection of a two-level system in a fluctuating
environment [68.8204255655161]
We re-examine a scheme originally intended to remove the effects of static Doppler broadening from an ensemble of non-interacting two-level systems (qubits)
We demonstrate that this scheme is far more powerful and can also protect a single (or even an ensemble) qubit's energy levels from noise which depends on both time and space.
arXiv Detail & Related papers (2023-02-08T01:44:30Z) - Growth of entanglement of generic states under dual-unitary dynamics [77.34726150561087]
Dual-unitary circuits are a class of locally-interacting quantum many-body systems.
In particular, they admit a class of solvable" initial states for which, in the thermodynamic limit, one can access the full non-equilibrium dynamics.
We show that in this case the entanglement increment during a time step is sub-maximal for finite times, however, it approaches the maximal value in the infinite-time limit.
arXiv Detail & Related papers (2022-07-29T18:20:09Z) - Dual Exponential Coupled Cluster Theory: Unitary Adaptation,
Implementation in the Variational Quantum Eigensolver Framework and Pilot
Applications [0.0]
We have developed a unitary variant of a double exponential coupled cluster theory.
The method relies upon the nontrivial action of a unitary, containing a set of rank-two scattering operators.
We have shown that all our schemes can perform uniformly well throughout the molecular potential energy surface.
arXiv Detail & Related papers (2022-07-12T05:10:58Z) - Intrinsic mechanisms for drive-dependent Purcell decay in
superconducting quantum circuits [68.8204255655161]
We find that in a wide range of settings, the cavity-qubit detuning controls whether a non-zero photonic population increases or decreases qubit decay Purcell.
Our method combines insights from a Keldysh treatment of the system, and Lindblad theory.
arXiv Detail & Related papers (2021-06-09T16:21:31Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Continuous and time-discrete non-Markovian system-reservoir
interactions: Dissipative coherent quantum feedback in Liouville space [62.997667081978825]
We investigate a quantum system simultaneously exposed to two structured reservoirs.
We employ a numerically exact quasi-2D tensor network combining both diagonal and off-diagonal system-reservoir interactions with a twofold memory for continuous and discrete retardation effects.
As a possible example, we study the non-Markovian interplay between discrete photonic feedback and structured acoustic phononovian modes, resulting in emerging inter-reservoir correlations and long-living population trapping within an initially-excited two-level system.
arXiv Detail & Related papers (2020-11-10T12:38:35Z) - Correlations in Perturbed Dual-Unitary Circuits: Efficient Path-Integral
Formula [0.0]
We find four types of non-dual-unitary(and non-integrable) systems where the correlation functions are exactly given by the path-sum formula.
The degree of generality of the observed dynamical features remained unclear.
arXiv Detail & Related papers (2020-06-12T16:36:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.