論文の概要: AI-driven emergence of frequency information non-uniform distribution
via THz metasurface spectrum prediction
- arxiv url: http://arxiv.org/abs/2312.03017v1
- Date: Tue, 5 Dec 2023 01:48:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-07 17:25:31.837884
- Title: AI-driven emergence of frequency information non-uniform distribution
via THz metasurface spectrum prediction
- Title(参考訳): aiによるthzメタサーフェススペクトル予測による周波数情報非一様分布の出現
- Authors: Xiaohua Xing, Yuqi Ren, Die Zou, Qiankun Zhang, Bingxuan Mao, Jianquan
Yao, Deyi Xiong, Shuang Zhang and Liang Wu
- Abstract要約: 我々は,AI予測に基づく準曲面のテラヘルツスペクトル変調効果の予測に関する研究中に,異なる周波数に関連する未報告の情報特性を明らかにした。
このアプローチは、既存のデータセットの利用を効果的に最適化し、人工知能、化学、複合材料設計、バイオメディシンなどの分野における学際的な研究と応用の道を開く。
- 参考スコア(独自算出の注目度): 36.84046475101662
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, artificial intelligence has been extensively deployed across
various scientific disciplines, optimizing and guiding the progression of
experiments through the integration of abundant datasets, whilst continuously
probing the vast theoretical space encapsulated within the data. Particularly,
deep learning models, due to their end-to-end adaptive learning capabilities,
are capable of autonomously learning intrinsic data features, thereby
transcending the limitations of traditional experience to a certain extent.
Here, we unveil previously unreported information characteristics pertaining to
different frequencies emerged during our work on predicting the terahertz
spectral modulation effects of metasurfaces based on AI-prediction. Moreover,
we have substantiated that our proposed methodology of simply adding
supplementary multi-frequency inputs to the existing dataset during the target
spectral prediction process can significantly enhance the predictive accuracy
of the network. This approach effectively optimizes the utilization of existing
datasets and paves the way for interdisciplinary research and applications in
artificial intelligence, chemistry, composite material design, biomedicine, and
other fields.
- Abstract(参考訳): 近年、人工知能は様々な科学分野に広く展開され、豊富なデータセットの統合を通じて実験の進行を最適化し、指導し、データにカプセル化された広大な理論空間を継続的に探っている。
特に、ディープラーニングモデルは、エンドツーエンドの適応学習能力のため、本質的なデータ特徴を自律的に学習することができるため、従来の経験の限界をある程度超越することができる。
本稿では,ai予測に基づくメタ表面のテラヘルツスペクトル変調効果の予測において出現する周波数の異なる情報特性について明らかにする。
さらに,提案手法では,目標スペクトル予測プロセス中に既存のデータセットに補足的多周波入力を追加することで,ネットワークの予測精度を大幅に向上させることができることを検証した。
このアプローチは、既存のデータセットの利用を効果的に最適化し、人工知能、化学、複合材料設計、バイオメディシンなどの分野における学際的な研究と応用の道を開く。
関連論文リスト
- Conservation-informed Graph Learning for Spatiotemporal Dynamics Prediction [84.26340606752763]
本稿では,保護インフォームドGNN(CiGNN)について紹介する。
このネットワークは、保守的かつ非保守的な情報が、潜時的行進戦略によって多次元空間を通過する対称性による一般的な対称性保存則に従うように設計されている。
結果は,CiGNNが顕著なベースライン精度と一般化性を示し,様々な時間的ダイナミクスの予測のための学習に容易に適用可能であることを示した。
論文 参考訳(メタデータ) (2024-12-30T13:55:59Z) - Emerging-properties Mapping Using Spatial Embedding Statistics: EMUSES [0.0]
EMUSESは、データ内の潜伏構造を明らかにする高次元埋め込みを作成する革新的なアプローチである。
予測精度と解釈可能性のギャップを埋めることで、EMUSESは複雑な現象の多因子的起源を理解する強力なツールを提供する。
論文 参考訳(メタデータ) (2024-06-20T13:39:14Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
本研究では,高次元経験データから力学系を学習する手法を提案する。
我々は、システムの複数の異なるインスタンスからデータが利用できる設定に焦点を当てる。
我々は、単純な理論的分析と、合成および実世界のデータセットに関する広範な実験を通して行動を研究する。
論文 参考訳(メタデータ) (2023-06-21T07:52:07Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z) - Trustworthiness of Laser-Induced Breakdown Spectroscopy Predictions via
Simulation-based Synthetic Data Augmentation and Multitask Learning [4.633997895806144]
レーザ誘起分解分光法を用いてスペクトルデータの定量的解析を行う。
我々は、利用可能なトレーニングデータの小さなサイズと、未知のデータに対する推論中の予測の検証に対処する。
論文 参考訳(メタデータ) (2022-10-07T18:00:09Z) - Symbolic Knowledge Extraction from Opaque Predictors Applied to
Cosmic-Ray Data Gathered with LISA Pathfinder [0.0]
不透明な機械学習モデルの印象的な予測性能と人間の理解不能な予測説明を組み合わせるために、いくつかのテクニックが存在する。
本稿では,LISAパスファインダー宇宙ミッションで収集した宇宙線データを再生可能なアンサンブル予測器に適用した異なる知識抽出器の結果を報告する。
論文 参考訳(メタデータ) (2022-09-10T15:35:40Z) - Pre-training via Denoising for Molecular Property Prediction [53.409242538744444]
本稿では,3次元分子構造の大規模データセットを平衡に利用した事前学習手法について述べる。
近年のノイズレギュラー化の進展に触発されて, 事前学習の目的は, 雑音の除去に基づくものである。
論文 参考訳(メタデータ) (2022-05-31T22:28:34Z) - Model-Based Deep Learning: On the Intersection of Deep Learning and
Optimization [101.32332941117271]
決定アルゴリズムは様々なアプリケーションで使われている。
数理モデルに頼らずにデータから調整された高度パラメトリックアーキテクチャを使用するディープラーニングアプローチが、ますます人気が高まっている。
モデルに基づく最適化とデータ中心のディープラーニングは、しばしば異なる規律とみなされる。
論文 参考訳(メタデータ) (2022-05-05T13:40:08Z) - Explainable Predictive Modeling for Limited Spectral Data [0.0]
本稿では、高次元および限られたスペクトルデータの予測結果を解釈するために、最近の説明可能なAI技術を適用する。
機器の解像度制限のため、分光データの重要な領域をピンポイントすると、データ収集プロセスを最適化する経路が生成される。
具体的には,MLモデルの評価がリアルタイムの実践に堅牢であることを保証するために,3つの異なるシナリオを設計する。
論文 参考訳(メタデータ) (2022-02-09T15:46:17Z) - Pre-Trained Models: Past, Present and Future [126.21572378910746]
大規模事前訓練モデル(PTM)は近年大きな成功を収め、人工知能(AI)分野におけるマイルストーンとなった。
知識を巨大なパラメータに格納し、特定のタスクを微調整することで、巨大なパラメータに暗黙的にエンコードされた豊富な知識は、さまざまな下流タスクの恩恵を受けることができる。
AIコミュニティが、モデルをスクラッチから学習するのではなく、下流タスクのバックボーンとしてPTMを採用することは、今、コンセンサスになっている。
論文 参考訳(メタデータ) (2021-06-14T02:40:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。