論文の概要: Symbolic Knowledge Extraction from Opaque Predictors Applied to
Cosmic-Ray Data Gathered with LISA Pathfinder
- arxiv url: http://arxiv.org/abs/2209.04697v1
- Date: Sat, 10 Sep 2022 15:35:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-13 14:19:32.002918
- Title: Symbolic Knowledge Extraction from Opaque Predictors Applied to
Cosmic-Ray Data Gathered with LISA Pathfinder
- Title(参考訳): lisaパスファインダーを用いた宇宙線データに対する不透明予測器からの記号的知識抽出
- Authors: Federico Sabbatini and Catia Grimani
- Abstract要約: 不透明な機械学習モデルの印象的な予測性能と人間の理解不能な予測説明を組み合わせるために、いくつかのテクニックが存在する。
本稿では,LISAパスファインダー宇宙ミッションで収集した宇宙線データを再生可能なアンサンブル予測器に適用した異なる知識抽出器の結果を報告する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine learning models are nowadays ubiquitous in space missions, performing
a wide variety of tasks ranging from the prediction of multivariate time series
through the detection of specific patterns in the input data. Adopted models
are usually deep neural networks or other complex machine learning algorithms
providing predictions that are opaque, i.e., human users are not allowed to
understand the rationale behind the provided predictions. Several techniques
exist in the literature to combine the impressive predictive performance of
opaque machine learning models with human-intelligible prediction explanations,
as for instance the application of symbolic knowledge extraction procedures. In
this paper are reported the results of different knowledge extractors applied
to an ensemble predictor capable of reproducing cosmic-ray data gathered on
board the LISA Pathfinder space mission. A discussion about the
readability/fidelity trade-off of the extracted knowledge is also presented.
- Abstract(参考訳): 機械学習モデルは、現在宇宙のミッションにおいてユビキタスであり、多変量時系列の予測から入力データの特定のパターンの検出まで、幅広いタスクを実行している。
一般的に採用されているモデルは、ディープニューラルネットワークや他の複雑な機械学習アルゴリズムであり、不透明な予測を提供する。
不透明な機械学習モデルの印象的な予測性能と、記号的知識抽出手法の適用など、人間の知的な予測説明を組み合わせるためのいくつかの技術が文献に存在している。
本稿では,LISAパスファインダー宇宙ミッションで収集した宇宙線データを再生可能なアンサンブル予測器に適用した異なる知識抽出器の結果を報告する。
抽出された知識の可読性/忠実性トレードオフについても論じる。
関連論文リスト
- Comparative Analysis of Predicting Subsequent Steps in Hénon Map [0.0]
本研究では,H'enonマップの進化予測における機械学習モデルの性能評価を行った。
その結果、LSTMネットワークは、特に極端な事象予測において、予測精度が優れていることが示唆された。
この研究は、カオス力学の解明における機械学習の重要性を浮き彫りにする。
論文 参考訳(メタデータ) (2024-05-15T17:32:31Z) - Counterfactual Explanations for Deep Learning-Based Traffic Forecasting [42.31238891397725]
この研究は、説明可能なAIアプローチ、反実的説明を活用し、ディープラーニングベースのトラフィック予測モデルの説明可能性とユーザビリティを高めることを目的としている。
この研究は、まず、過去の交通データと文脈変数に基づいて、交通速度を予測するディープラーニングモデルを実装する。
次に、これらの入力変数の変化が予測結果にどのように影響するかを照らすために、対実的な説明が使用される。
論文 参考訳(メタデータ) (2024-05-01T11:26:31Z) - AI-driven emergence of frequency information non-uniform distribution
via THz metasurface spectrum prediction [36.84046475101662]
我々は,AI予測に基づく準曲面のテラヘルツスペクトル変調効果の予測に関する研究中に,異なる周波数に関連する未報告の情報特性を明らかにした。
このアプローチは、既存のデータセットの利用を効果的に最適化し、人工知能、化学、複合材料設計、バイオメディシンなどの分野における学際的な研究と応用の道を開く。
論文 参考訳(メタデータ) (2023-12-05T01:48:58Z) - Machine-Learning Solutions for the Analysis of Single-Particle Diffusion
Trajectories [0.0]
拡散時系列の機械学習における最近導入された手法の概要について概説する。
我々は、解釈可能性を改善し、マシンの学習プロセスに関する具体的な洞察を提供するとともに、不確実性の推定と特徴に基づくアプローチを含む手段に焦点を当てる。
論文 参考訳(メタデータ) (2023-08-18T09:29:29Z) - Visual Affordance Prediction for Guiding Robot Exploration [56.17795036091848]
我々は,ロボット探索を導くための視覚能力の学習手法を開発した。
VQ-VAEの潜伏埋め込み空間における条件分布の学習にはTransformerベースのモデルを用いる。
本稿では,ロボット操作における視覚的目標条件付きポリシー学習において,目標サンプリング分布として機能することで探索を導くために,トレーニングされた余裕モデルをどのように利用できるかを示す。
論文 参考訳(メタデータ) (2023-05-28T17:53:09Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z) - TempSAL -- Uncovering Temporal Information for Deep Saliency Prediction [64.63645677568384]
本稿では,逐次時間間隔でサリエンシマップを出力する新たなサリエンシ予測モデルを提案する。
提案手法は,学習した時間マップを組み合わせることで,サリエンシ予測を局所的に調整する。
私たちのコードはGitHubで公開されます。
論文 参考訳(メタデータ) (2023-01-05T22:10:16Z) - Machine Learning Algorithms for Time Series Analysis and Forecasting [0.0]
時系列データは、販売記録から患者の健康進化指標まで、あらゆる場所で使用されている。
様々な統計的および深層学習モデル、特にARIMA、Prophet、LSTMが検討されている。
我々の研究は、誰でも予測プロセスの理解を深め、現在使われている様々な芸術モデルの状態を識別するために利用できる。
論文 参考訳(メタデータ) (2022-11-25T22:12:03Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Representation Learning for Sequence Data with Deep Autoencoding
Predictive Components [96.42805872177067]
本稿では,シーケンスデータの有用な表現が潜在空間における単純な構造を示すべきという直感に基づく,シーケンスデータの自己教師型表現学習法を提案する。
我々は,過去と将来のウィンドウ間の相互情報である潜在特徴系列の予測情報を最大化することにより,この潜時構造を奨励する。
提案手法は,ノイズの多い動的システムの潜時空間を復元し,タスク予測のための予測特徴を抽出し,エンコーダを大量の未ラベルデータで事前訓練する場合に音声認識を改善する。
論文 参考訳(メタデータ) (2020-10-07T03:34:01Z) - Meta-learning framework with applications to zero-shot time-series
forecasting [82.61728230984099]
この研究は幅広いメタラーニングフレームワークを使って肯定的な証拠を提供する。
残余接続はメタラーニング適応機構として機能する。
我々は、ソースTSデータセット上でニューラルネットワークをトレーニングし、異なるターゲットTSデータセット上で再トレーニングすることなくデプロイできることを示します。
論文 参考訳(メタデータ) (2020-02-07T16:39:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。