CaloQVAE : Simulating high-energy particle-calorimeter interactions using hybrid quantum-classical generative models
- URL: http://arxiv.org/abs/2312.03179v5
- Date: Fri, 11 Oct 2024 22:33:06 GMT
- Title: CaloQVAE : Simulating high-energy particle-calorimeter interactions using hybrid quantum-classical generative models
- Authors: Sehmimul Hoque, Hao Jia, Abhishek Abhishek, Mojde Fadaie, J. Quetzalcoatl Toledo-MarĂn, Tiago Vale, Roger G. Melko, Maximilian Swiatlowski, Wojciech T. Fedorko,
- Abstract summary: Modelling of high-energy particles propagating through the calorimeter section of the detector is the most computationally intensiveMC simulation task.
We introduce a technique combining recent advancements in generative models and quantum annealing for fast and efficient simulation of high-energy particle-calorimeter interactions.
- Score: 1.6418406210795666
- License:
- Abstract: The Large Hadron Collider's high luminosity era presents major computational challenges in the analysis of collision events. Large amounts of Monte Carlo (MC) simulation will be required to constrain the statistical uncertainties of the simulated datasets below these of the experimental data. Modelling of high-energy particles propagating through the calorimeter section of the detector is the most computationally intensive MC simulation task. We introduce a technique combining recent advancements in generative models and quantum annealing for fast and efficient simulation of high-energy particle-calorimeter interactions.
Related papers
- A Comprehensive Evaluation of Generative Models in Calorimeter Shower Simulation [0.0]
"Fast Simulation" has been pivotal in overcoming computational bottlenecks.
The use of deep-generative models has sparked a surge of interest in surrogate modeling for detector simulations.
Our evaluation revealed that the CaloDiffusion and CaloScore generative models demonstrate the most accurate simulation of particle showers.
arXiv Detail & Related papers (2024-06-08T11:17:28Z) - Generative Diffusion Models for Fast Simulations of Particle Collisions at CERN [3.2686289567336235]
In High Energy Physics simulations play a crucial role in unraveling the complexities of particle collision experiments within CERN's Large Hadron Collider.
Recent advancements highlight the efficacy of diffusion models as state-of-the-art generative machine learning methods.
We present the first simulation for Zero Degree Calorimeter (ZDC) at the ALICE experiment based on diffusion models, achieving the highest fidelity compared to existing baselines.
arXiv Detail & Related papers (2024-06-05T13:11:53Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - A conditional latent autoregressive recurrent model for generation and forecasting of beam dynamics in particle accelerators [46.348283638884425]
We propose a two-step unsupervised deep learning framework named as Latent Autoregressive Recurrent Model (CLARM) for learning dynamics of charged particles in accelerators.
The CLARM can generate projections at various accelerator sampling modules by capturing and decoding the latent space representation.
The results demonstrate that the generative and forecasting ability of the proposed approach is promising when tested against a variety of evaluation metrics.
arXiv Detail & Related papers (2024-03-19T22:05:17Z) - Accelerated quantum circuit Monte-Carlo simulation for heavy quark thermalization [0.0]
We introduce and formalize an accelerated quantum circuit Monte-Carlo framework to simulate heavy quark thermalization.
With simplified drag and diffusion coefficients connected by Einstein's relation, we simulate the thermalization of a heavy quark in isotropic and anisotropic mediums.
arXiv Detail & Related papers (2023-12-26T19:01:19Z) - Comparison of Point Cloud and Image-based Models for Calorimeter Fast
Simulation [48.26243807950606]
Two state-of-the-art score based models are trained on the same set of calorimeter simulation and directly compared.
generative models are a new class of generative models that have been shown to accurately generate high dimensional calorimeter datasets.
arXiv Detail & Related papers (2023-07-10T08:20:45Z) - CaloDVAE : Discrete Variational Autoencoders for Fast Calorimeter Shower
Simulation [2.0646127669654826]
Calorimeter simulation is the most computationally expensive part of Monte Carlo generation of samples.
We present a technique based on Discrete Variational Autoencoders (DVAEs) to simulate particle showers in Electromagnetic Calorimeters.
arXiv Detail & Related papers (2022-10-14T00:18:40Z) - Optimising hadronic collider simulations using amplitude neural networks [0.0]
We train neural network models on one-loop amplitudes from the NJet C++ library and interface them with the Sherpa Monte Carlo event generator.
We find excellent agreement in the distributions and a reduced total simulation time by a factor of thirty.
arXiv Detail & Related papers (2022-02-09T15:08:30Z) - Hybridized Methods for Quantum Simulation in the Interaction Picture [69.02115180674885]
We provide a framework that allows different simulation methods to be hybridized and thereby improve performance for interaction picture simulations.
Physical applications of these hybridized methods yield a gate complexity scaling as $log2 Lambda$ in the electric cutoff.
For the general problem of Hamiltonian simulation subject to dynamical constraints, these methods yield a query complexity independent of the penalty parameter $lambda$ used to impose an energy cost.
arXiv Detail & Related papers (2021-09-07T20:01:22Z) - Molecular spin qudits for quantum simulation of light-matter
interactions [62.223544431366896]
We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics of photon fields strongly interacting with matter.
The basic unit of the proposed molecular quantum simulator can be realized by a simple dimer of a spin 1/2 and a spin $S$ transition metal ion, solely controlled by microwave pulses.
arXiv Detail & Related papers (2021-03-17T15:03:12Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.