A Comprehensive Evaluation of Generative Models in Calorimeter Shower Simulation
- URL: http://arxiv.org/abs/2406.12898v1
- Date: Sat, 8 Jun 2024 11:17:28 GMT
- Title: A Comprehensive Evaluation of Generative Models in Calorimeter Shower Simulation
- Authors: Farzana Yasmin Ahmad, Vanamala Venkataswamy, Geoffrey Fox,
- Abstract summary: "Fast Simulation" has been pivotal in overcoming computational bottlenecks.
The use of deep-generative models has sparked a surge of interest in surrogate modeling for detector simulations.
Our evaluation revealed that the CaloDiffusion and CaloScore generative models demonstrate the most accurate simulation of particle showers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The pursuit of understanding fundamental particle interactions has reached unparalleled precision levels. Particle physics detectors play a crucial role in generating low-level object signatures that encode collision physics. However, simulating these particle collisions is a demanding task in terms of memory and computation which will be exasperated with larger data volumes, more complex detectors, and a higher pileup environment in the High-Luminosity LHC. The introduction of "Fast Simulation" has been pivotal in overcoming computational bottlenecks. The use of deep-generative models has sparked a surge of interest in surrogate modeling for detector simulations, generating particle showers that closely resemble the observed data. Nonetheless, there is a pressing need for a comprehensive evaluation of their performance using a standardized set of metrics. In this study, we conducted a rigorous evaluation of three generative models using standard datasets and a diverse set of metrics derived from physics, computer vision, and statistics. Furthermore, we explored the impact of using full versus mixed precision modes during inference. Our evaluation revealed that the CaloDiffusion and CaloScore generative models demonstrate the most accurate simulation of particle showers, yet there remains substantial room for improvement. Our findings identified areas where the evaluated models fell short in accurately replicating Geant4 data.
Related papers
- Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Deep Generative Models for Ultra-High Granularity Particle Physics Detector Simulation: A Voyage From Emulation to Extrapolation [0.0]
This thesis aims to overcome this challenge for the Pixel Vertex Detector (PXD) at the Belle II experiment.
This study introduces, for the first time, the results of using deep generative models for ultra-high granularity detector simulation in Particle Physics.
arXiv Detail & Related papers (2024-03-05T23:12:47Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Generative Models for Simulation of KamLAND-Zen [0.0]
Search for neutrinoless double beta decay (0nubetabeta) are poised to answer deep questions on the nature of neutrinos.
To claim discovery, accurate and efficient simulations of detector events that mimic 0nubetabeta is critical.
Traditional Monte Carlo simulations can be supplemented by machine-learning-based generative models.
arXiv Detail & Related papers (2023-12-22T01:47:16Z) - Deep Generative Models for Detector Signature Simulation: A Taxonomic Review [0.0]
Signatures from particle physics detectors are low-level objects (such as energy depositions or tracks) encoding the physics of collisions.
The complete simulation of them in a detector is a computational and storage-intensive task.
We conduct a comprehensive and exhaustive taxonomic review of the existing literature on the simulation of detector signatures.
arXiv Detail & Related papers (2023-12-15T08:27:39Z) - Comparison of Point Cloud and Image-based Models for Calorimeter Fast
Simulation [48.26243807950606]
Two state-of-the-art score based models are trained on the same set of calorimeter simulation and directly compared.
generative models are a new class of generative models that have been shown to accurately generate high dimensional calorimeter datasets.
arXiv Detail & Related papers (2023-07-10T08:20:45Z) - Particle-Based Score Estimation for State Space Model Learning in
Autonomous Driving [62.053071723903834]
Multi-object state estimation is a fundamental problem for robotic applications.
We consider learning maximum-likelihood parameters using particle methods.
We apply our method to real data collected from autonomous vehicles.
arXiv Detail & Related papers (2022-12-14T01:21:05Z) - Applying Physics-Informed Enhanced Super-Resolution Generative
Adversarial Networks to Turbulent Premixed Combustion and Engine-like Flame
Kernel Direct Numerical Simulation Data [0.0]
This work advances the recently developed PIESRGAN modeling approach to turbulent premixed combustion.
The resulting model provides good results for a priori and a posteriori tests on direct numerical simulation data of a fully turbulent premixed flame kernel.
arXiv Detail & Related papers (2022-10-28T15:27:46Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - SUPA: A Lightweight Diagnostic Simulator for Machine Learning in
Particle Physics [0.0]
SUPA is an algorithm and software package for generating data by simulating simplified particle propagation, scattering and shower development in matter.
The proposed simulator generates thousands of particle showers per second on a desktop machine, a speed up of up to 6 orders of magnitudes over Geant4.
arXiv Detail & Related papers (2022-02-10T13:14:12Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
Redox flow batteries (RFBs) offer the capability to store large amounts of energy cheaply and efficiently.
There is a need for fast and accurate models of the charge-discharge curve of a RFB to potentially improve the battery capacity and performance.
We develop a multifidelity model for predicting the charge-discharge curve of a RFB.
arXiv Detail & Related papers (2021-06-17T00:49:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.