Deep Learning for Koopman-based Dynamic Movement Primitives
- URL: http://arxiv.org/abs/2312.03328v1
- Date: Wed, 6 Dec 2023 07:33:22 GMT
- Title: Deep Learning for Koopman-based Dynamic Movement Primitives
- Authors: Tyler Han and Carl Glen Henshaw
- Abstract summary: We propose a novel approach by joining the theories of Koopman Operators and Dynamic Movement Primitives to Learning from Demonstration.
Our approach, named glsadmd, projects nonlinear dynamical systems into linear latent spaces such that a solution reproduces the desired complex motion.
Our results are comparable to the Extended Dynamic Mode Decomposition on the LASA Handwriting dataset but with training on only a small fractions of the letters.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The challenge of teaching robots to perform dexterous manipulation, dynamic
locomotion, or whole--body manipulation from a small number of demonstrations
is an important research field that has attracted interest from across the
robotics community. In this work, we propose a novel approach by joining the
theories of Koopman Operators and Dynamic Movement Primitives to Learning from
Demonstration. Our approach, named \gls{admd}, projects nonlinear dynamical
systems into linear latent spaces such that a solution reproduces the desired
complex motion. Use of an autoencoder in our approach enables generalizability
and scalability, while the constraint to a linear system attains
interpretability. Our results are comparable to the Extended Dynamic Mode
Decomposition on the LASA Handwriting dataset but with training on only a small
fractions of the letters.
Related papers
- Learning Low-Dimensional Strain Models of Soft Robots by Looking at the Evolution of Their Shape with Application to Model-Based Control [2.058941610795796]
This paper introduces a streamlined method for learning low-dimensional, physics-based models.
We validate our approach through simulations with various planar soft manipulators.
Thanks to the capability of the method of generating physically compatible models, the learned models can be straightforwardly combined with model-based control policies.
arXiv Detail & Related papers (2024-10-31T18:37:22Z) - Learning Generalizable Human Motion Generator with Reinforcement Learning [95.62084727984808]
Text-driven human motion generation is one of the vital tasks in computer-aided content creation.
Existing methods often overfit specific motion expressions in the training data, hindering their ability to generalize.
We present textbfInstructMotion, which incorporate the trail and error paradigm in reinforcement learning for generalizable human motion generation.
arXiv Detail & Related papers (2024-05-24T13:29:12Z) - Leveraging Sequentiality in Reinforcement Learning from a Single
Demonstration [68.94506047556412]
We propose to leverage a sequential bias to learn control policies for complex robotic tasks using a single demonstration.
We show that DCIL-II can solve with unprecedented sample efficiency some challenging simulated tasks such as humanoid locomotion and stand-up.
arXiv Detail & Related papers (2022-11-09T10:28:40Z) - Learning Riemannian Stable Dynamical Systems via Diffeomorphisms [0.23204178451683263]
Dexterous and autonomous robots should be capable of executing elaborated dynamical motions skillfully.
Learning techniques may be leveraged to build models of such dynamic skills.
To accomplish this, the learning model needs to encode a stable vector field that resembles the desired motion dynamics.
arXiv Detail & Related papers (2022-11-06T16:28:45Z) - MILD: Multimodal Interactive Latent Dynamics for Learning Human-Robot
Interaction [34.978017200500005]
We propose Multimodal Interactive Latent Dynamics (MILD) to address the problem of two-party physical Human-Robot Interactions (HRIs)
We learn the interaction dynamics from demonstrations, using Hidden Semi-Markov Models (HSMMs) to model the joint distribution of the interacting agents in the latent space of a Variational Autoencoder (VAE)
MILD generates more accurate trajectories for the controlled agent (robot) when conditioned on the observed agent's (human) trajectory.
arXiv Detail & Related papers (2022-10-22T11:25:11Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - An Adaptable Approach to Learn Realistic Legged Locomotion without
Examples [38.81854337592694]
This work proposes a generic approach for ensuring realism in locomotion by guiding the learning process with the spring-loaded inverted pendulum model as a reference.
We present experimental results showing that even in a model-free setup, the learned policies can generate realistic and energy-efficient locomotion gaits for a bipedal and a quadrupedal robot.
arXiv Detail & Related papers (2021-10-28T10:14:47Z) - DiffSRL: Learning Dynamic-aware State Representation for Deformable
Object Control with Differentiable Simulator [26.280021036447213]
Latent space that can capture dynamics related information has wide application in areas such as accelerating model free reinforcement learning.
We propose DiffSRL, a dynamic state representation learning pipeline utilizing differentiable simulation.
Our model demonstrates superior performance in terms of capturing long-term dynamics as well as reward prediction.
arXiv Detail & Related papers (2021-10-24T04:53:58Z) - Learning to Shift Attention for Motion Generation [55.61994201686024]
One challenge of motion generation using robot learning from demonstration techniques is that human demonstrations follow a distribution with multiple modes for one task query.
Previous approaches fail to capture all modes or tend to average modes of the demonstrations and thus generate invalid trajectories.
We propose a motion generation model with extrapolation ability to overcome this problem.
arXiv Detail & Related papers (2021-02-24T09:07:52Z) - Neural Dynamic Policies for End-to-End Sensorimotor Learning [51.24542903398335]
The current dominant paradigm in sensorimotor control, whether imitation or reinforcement learning, is to train policies directly in raw action spaces.
We propose Neural Dynamic Policies (NDPs) that make predictions in trajectory distribution space.
NDPs outperform the prior state-of-the-art in terms of either efficiency or performance across several robotic control tasks.
arXiv Detail & Related papers (2020-12-04T18:59:32Z) - Deep Imitation Learning for Bimanual Robotic Manipulation [70.56142804957187]
We present a deep imitation learning framework for robotic bimanual manipulation.
A core challenge is to generalize the manipulation skills to objects in different locations.
We propose to (i) decompose the multi-modal dynamics into elemental movement primitives, (ii) parameterize each primitive using a recurrent graph neural network to capture interactions, and (iii) integrate a high-level planner that composes primitives sequentially and a low-level controller to combine primitive dynamics and inverse kinematics control.
arXiv Detail & Related papers (2020-10-11T01:40:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.