Learning System Dynamics without Forgetting
- URL: http://arxiv.org/abs/2407.00717v2
- Date: Tue, 25 Feb 2025 03:14:10 GMT
- Title: Learning System Dynamics without Forgetting
- Authors: Xikun Zhang, Dongjin Song, Yushan Jiang, Yixin Chen, Dacheng Tao,
- Abstract summary: We investigate the problem of Continual Dynamics Learning (CDL), examining task configurations and evaluating the applicability of existing techniques.<n>We propose the Mode-switching Graph ODE (MS-GODE) model, which integrates the strengths LG-ODE and sub-network learning with a mode-switching module.<n>We construct a novel benchmark of biological dynamic systems for CDL, Bio-CDL, featuring diverse systems with disparate dynamics.
- Score: 60.08612207170659
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Observation-based trajectory prediction for systems with unknown dynamics is essential in fields such as physics and biology. Most existing approaches are limited to learning within a single system with fixed dynamics patterns. However, many real-world applications require learning across systems with evolving dynamics patterns, a challenge that has been largely overlooked. To address this, we systematically investigate the problem of Continual Dynamics Learning (CDL), examining task configurations and evaluating the applicability of existing techniques, while identifying key challenges. In response, we propose the Mode-switching Graph ODE (MS-GODE) model, which integrates the strengths LG-ODE and sub-network learning with a mode-switching module, enabling efficient learning over varying dynamics. Moreover, we construct a novel benchmark of biological dynamic systems for CDL, Bio-CDL, featuring diverse systems with disparate dynamics and significantly enriching the research field of machine learning for dynamic systems. Our code available at https://github.com/QueuQ/MS-GODE.
Related papers
- LeARN: Learnable and Adaptive Representations for Nonlinear Dynamics in System Identification [0.0]
We introduce a nonlinear system identification framework called LeARN.
It transcends the need for prior domain knowledge by learning the library of basis functions directly from data.
We validate our framework on the Neural Fly dataset, showcasing its robust adaptation and capabilities.
arXiv Detail & Related papers (2024-12-16T18:03:23Z) - Efficient PAC Learnability of Dynamical Systems Over Multilayer Networks [30.424671907681688]
We study the learnability of dynamical systems over multilayer networks, which are more realistic and challenging.
We present an efficient PAC learning algorithm with provable guarantees to show that the learner only requires a small number of training examples to infer an unknown system.
arXiv Detail & Related papers (2024-05-11T02:35:08Z) - Generalizing Graph ODE for Learning Complex System Dynamics across
Environments [33.63818978256567]
GG-ODE is a machine learning framework for learning continuous multi-agent system dynamics across environments.
Our model learns system dynamics using neural ordinary differential equations (ODE) parameterized by Graph Neural Networks (GNNs)
Experiments over various physical simulations show that our model can accurately predict system dynamics, especially in the long range.
arXiv Detail & Related papers (2023-07-10T00:29:25Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Which priors matter? Benchmarking models for learning latent dynamics [70.88999063639146]
Several methods have proposed to integrate priors from classical mechanics into machine learning models.
We take a sober look at the current capabilities of these models.
We find that the use of continuous and time-reversible dynamics benefits models of all classes.
arXiv Detail & Related papers (2021-11-09T23:48:21Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - GEM: Group Enhanced Model for Learning Dynamical Control Systems [78.56159072162103]
We build effective dynamical models that are amenable to sample-based learning.
We show that learning the dynamics on a Lie algebra vector space is more effective than learning a direct state transition model.
This work sheds light on a connection between learning of dynamics and Lie group properties, which opens doors for new research directions.
arXiv Detail & Related papers (2021-04-07T01:08:18Z) - Bridging the Gap: Machine Learning to Resolve Improperly Modeled
Dynamics [4.940323406667406]
We present a data-driven modeling strategy to overcome improperly modeled dynamics for systems exhibiting complex-temporal behaviors.
We propose a Deep Learning framework to resolve the differences between the true dynamics of the system and the dynamics given by a model of the system that is either inaccurately or inadequately described.
arXiv Detail & Related papers (2020-08-23T04:57:02Z) - Neural Dynamical Systems: Balancing Structure and Flexibility in
Physical Prediction [14.788494279754481]
We introduce Neural Dynamical Systems (NDS), a method of learning dynamical models in various gray-box settings.
NDS uses neural networks to estimate free parameters of the system, predicts residual terms, and numerically integrates over time to predict future states.
arXiv Detail & Related papers (2020-06-23T00:50:48Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
We propose an approach for learning dynamical systems that are guaranteed to be stable over the entire state space.
We show that such learning systems are able to model simple dynamical systems and can be combined with additional deep generative models to learn complex dynamics.
arXiv Detail & Related papers (2020-01-17T00:04:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.