DiffSRL: Learning Dynamic-aware State Representation for Deformable
Object Control with Differentiable Simulator
- URL: http://arxiv.org/abs/2110.12352v1
- Date: Sun, 24 Oct 2021 04:53:58 GMT
- Title: DiffSRL: Learning Dynamic-aware State Representation for Deformable
Object Control with Differentiable Simulator
- Authors: Sirui Chen, Yunhao Liu, Jialong Li, Shang Wen Yao, Tingxiang Fan, Jia
Pan
- Abstract summary: Latent space that can capture dynamics related information has wide application in areas such as accelerating model free reinforcement learning.
We propose DiffSRL, a dynamic state representation learning pipeline utilizing differentiable simulation.
Our model demonstrates superior performance in terms of capturing long-term dynamics as well as reward prediction.
- Score: 26.280021036447213
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Dynamic state representation learning is an important task in robot learning.
Latent space that can capture dynamics related information has wide application
in areas such as accelerating model free reinforcement learning, closing the
simulation to reality gap, as well as reducing the motion planning complexity.
However, current dynamic state representation learning methods scale poorly on
complex dynamic systems such as deformable objects, and cannot directly embed
well defined simulation function into the training pipeline. We propose
DiffSRL, a dynamic state representation learning pipeline utilizing
differentiable simulation that can embed complex dynamics models as part of the
end-to-end training. We also integrate differentiable dynamic constraints as
part of the pipeline which provide incentives for the latent state to be aware
of dynamical constraints. We further establish a state representation learning
benchmark on a soft-body simulation system, PlasticineLab, and our model
demonstrates superior performance in terms of capturing long-term dynamics as
well as reward prediction.
Related papers
- Pre-Trained Video Generative Models as World Simulators [59.546627730477454]
We propose Dynamic World Simulation (DWS) to transform pre-trained video generative models into controllable world simulators.
To achieve precise alignment between conditioned actions and generated visual changes, we introduce a lightweight, universal action-conditioned module.
Experiments demonstrate that DWS can be versatilely applied to both diffusion and autoregressive transformer models.
arXiv Detail & Related papers (2025-02-10T14:49:09Z) - GauSim: Registering Elastic Objects into Digital World by Gaussian Simulator [55.02281855589641]
GauSim is a novel neural network-based simulator designed to capture the dynamic behaviors of real-world elastic objects represented through Gaussian kernels.
We leverage continuum mechanics, modeling each kernel as a continuous piece of matter to account for realistic deformations without idealized assumptions.
GauSim incorporates explicit physics constraints, such as mass and momentum conservation, ensuring interpretable results and robust, physically plausible simulations.
arXiv Detail & Related papers (2024-12-23T18:58:17Z) - Deep Learning for Koopman-based Dynamic Movement Primitives [0.0]
We propose a novel approach by joining the theories of Koopman Operators and Dynamic Movement Primitives to Learning from Demonstration.
Our approach, named glsadmd, projects nonlinear dynamical systems into linear latent spaces such that a solution reproduces the desired complex motion.
Our results are comparable to the Extended Dynamic Mode Decomposition on the LASA Handwriting dataset but with training on only a small fractions of the letters.
arXiv Detail & Related papers (2023-12-06T07:33:22Z) - Causal Dynamics Learning for Task-Independent State Abstraction [61.707048209272884]
We introduce Causal Dynamics Learning for Task-Independent State Abstraction (CDL)
CDL learns a theoretically proved causal dynamics model that removes unnecessary dependencies between state variables and the action.
A state abstraction can then be derived from the learned dynamics.
arXiv Detail & Related papers (2022-06-27T17:02:53Z) - Learning Individual Interactions from Population Dynamics with Discrete-Event Simulation Model [9.827590402695341]
We will explore the possibility of learning a discrete-event simulation representation of complex system dynamics.
Our results show that the algorithm can data-efficiently capture complex network dynamics in several fields with meaningful events.
arXiv Detail & Related papers (2022-05-04T21:33:56Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - ACID: Action-Conditional Implicit Visual Dynamics for Deformable Object
Manipulation [135.10594078615952]
We introduce ACID, an action-conditional visual dynamics model for volumetric deformable objects.
A benchmark contains over 17,000 action trajectories with six types of plush toys and 78 variants.
Our model achieves the best performance in geometry, correspondence, and dynamics predictions.
arXiv Detail & Related papers (2022-03-14T04:56:55Z) - Objective-aware Traffic Simulation via Inverse Reinforcement Learning [31.26257563160961]
We formulate traffic simulation as an inverse reinforcement learning problem.
We propose a parameter sharing adversarial inverse reinforcement learning model for dynamics-robust simulation learning.
Our proposed model is able to imitate a vehicle's trajectories in the real world while simultaneously recovering the reward function.
arXiv Detail & Related papers (2021-05-20T07:26:34Z) - Automatic Differentiation and Continuous Sensitivity Analysis of Rigid
Body Dynamics [15.565726546970678]
We introduce a differentiable physics simulator for rigid body dynamics.
In the context of trajectory optimization, we introduce a closed-loop model-predictive control algorithm.
arXiv Detail & Related papers (2020-01-22T03:54:00Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
We propose an approach for learning dynamical systems that are guaranteed to be stable over the entire state space.
We show that such learning systems are able to model simple dynamical systems and can be combined with additional deep generative models to learn complex dynamics.
arXiv Detail & Related papers (2020-01-17T00:04:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.