RING-NeRF : Rethinking Inductive Biases for Versatile and Efficient Neural Fields
- URL: http://arxiv.org/abs/2312.03357v3
- Date: Wed, 17 Jul 2024 07:47:30 GMT
- Title: RING-NeRF : Rethinking Inductive Biases for Versatile and Efficient Neural Fields
- Authors: Doriand Petit, Steve Bourgeois, Dumitru Pavel, Vincent Gay-Bellile, Florian Chabot, Loic Barthe,
- Abstract summary: We propose the RING-NeRF architecture which includes two inductive biases.
A single reconstruction process takes advantage of those inductive biases and experimentally demonstrates on-par performances.
We also design a single reconstruction process that takes advantage of those inductive biases and experimentally demonstrates on-par performances.
- Score: 1.1816466088976698
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in Neural Fields mostly rely on developing task-specific supervision which often complicates the models. Rather than developing hard-to-combine and specific modules, another approach generally overlooked is to directly inject generic priors on the scene representation (also called inductive biases) into the NeRF architecture. Based on this idea, we propose the RING-NeRF architecture which includes two inductive biases : a continuous multi-scale representation of the scene and an invariance of the decoder's latent space over spatial and scale domains. We also design a single reconstruction process that takes advantage of those inductive biases and experimentally demonstrates on-par performances in terms of quality with dedicated architecture on multiple tasks (anti-aliasing, few view reconstruction, SDF reconstruction without scene-specific initialization) while being more efficient. Moreover, RING-NeRF has the distinctive ability to dynamically increase the resolution of the model, opening the way to adaptive reconstruction.
Related papers
- Neural Experts: Mixture of Experts for Implicit Neural Representations [41.395193251292895]
Implicit neural representations (INRs) have proven effective in various tasks including image, shape, audio, and video reconstruction.
We propose a mixture of experts (MoE) implicit neural representation approach that enables learning local piece-wise continuous functions.
We show that incorporating a mixture of experts architecture into existing INR formulations provides a boost in speed, accuracy, and memory requirements.
arXiv Detail & Related papers (2024-10-29T01:11:25Z) - Few-shot NeRF by Adaptive Rendering Loss Regularization [78.50710219013301]
Novel view synthesis with sparse inputs poses great challenges to Neural Radiance Field (NeRF)
Recent works demonstrate that the frequency regularization of Positional rendering can achieve promising results for few-shot NeRF.
We propose Adaptive Rendering loss regularization for few-shot NeRF, dubbed AR-NeRF.
arXiv Detail & Related papers (2024-10-23T13:05:26Z) - Neural Implicit Representation for Highly Dynamic LiDAR Mapping and Odometry [22.729848609868252]
NeRF-LOAM has shown notable performance in NeRF-based SLAM applications.
This paper proposes a novel method designed to improve reconstruction in highly dynamic outdoor scenes.
arXiv Detail & Related papers (2024-09-26T10:58:31Z) - BirdNeRF: Fast Neural Reconstruction of Large-Scale Scenes From Aerial
Imagery [3.4956406636452626]
We introduce BirdNeRF, an adaptation of Neural Radiance Fields (NeRF) designed specifically for reconstructing large-scale scenes using aerial imagery.
We present a novel bird-view pose-based spatial decomposition algorithm that decomposes a large aerial image set into multiple small sets with appropriately sized overlaps.
We evaluate our approach on existing datasets as well as against our own drone footage, improving reconstruction speed by 10x over classical photogrammetry software and 50x over state-of-the-art large-scale NeRF solution.
arXiv Detail & Related papers (2024-02-07T03:18:34Z) - Enhancing NeRF akin to Enhancing LLMs: Generalizable NeRF Transformer
with Mixture-of-View-Experts [88.23732496104667]
Cross-scene generalizable NeRF models have become a new spotlight of the NeRF field.
We bridge "neuralized" architectures with the powerful Mixture-of-Experts (MoE) idea from large language models.
Our proposed model, dubbed GNT with Mixture-of-View-Experts (GNT-MOVE), has experimentally shown state-of-the-art results when transferring to unseen scenes.
arXiv Detail & Related papers (2023-08-22T21:18:54Z) - From NeurODEs to AutoencODEs: a mean-field control framework for
width-varying Neural Networks [68.8204255655161]
We propose a new type of continuous-time control system, called AutoencODE, based on a controlled field that drives dynamics.
We show that many architectures can be recovered in regions where the loss function is locally convex.
arXiv Detail & Related papers (2023-07-05T13:26:17Z) - Single-Stage Diffusion NeRF: A Unified Approach to 3D Generation and
Reconstruction [77.69363640021503]
3D-aware image synthesis encompasses a variety of tasks, such as scene generation and novel view synthesis from images.
We present SSDNeRF, a unified approach that employs an expressive diffusion model to learn a generalizable prior of neural radiance fields (NeRF) from multi-view images of diverse objects.
arXiv Detail & Related papers (2023-04-13T17:59:01Z) - MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface
Reconstruction [72.05649682685197]
State-of-the-art neural implicit methods allow for high-quality reconstructions of simple scenes from many input views.
This is caused primarily by the inherent ambiguity in the RGB reconstruction loss that does not provide enough constraints.
Motivated by recent advances in the area of monocular geometry prediction, we explore the utility these cues provide for improving neural implicit surface reconstruction.
arXiv Detail & Related papers (2022-06-01T17:58:15Z) - Accurate and Lightweight Image Super-Resolution with Model-Guided Deep
Unfolding Network [63.69237156340457]
We present and advocate an explainable approach toward SISR named model-guided deep unfolding network (MoG-DUN)
MoG-DUN is accurate (producing fewer aliasing artifacts), computationally efficient (with reduced model parameters), and versatile (capable of handling multiple degradations)
The superiority of the proposed MoG-DUN method to existing state-of-theart image methods including RCAN, SRDNF, and SRFBN is substantiated by extensive experiments on several popular datasets and various degradation scenarios.
arXiv Detail & Related papers (2020-09-14T08:23:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.