Neural Implicit Representation for Highly Dynamic LiDAR Mapping and Odometry
- URL: http://arxiv.org/abs/2409.17729v1
- Date: Thu, 26 Sep 2024 10:58:31 GMT
- Title: Neural Implicit Representation for Highly Dynamic LiDAR Mapping and Odometry
- Authors: Qi Zhang, He Wang, Ru Li, Wenbin Li,
- Abstract summary: NeRF-LOAM has shown notable performance in NeRF-based SLAM applications.
This paper proposes a novel method designed to improve reconstruction in highly dynamic outdoor scenes.
- Score: 22.729848609868252
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in Simultaneous Localization and Mapping (SLAM) have increasingly highlighted the robustness of LiDAR-based techniques. At the same time, Neural Radiance Fields (NeRF) have introduced new possibilities for 3D scene reconstruction, exemplified by SLAM systems. Among these, NeRF-LOAM has shown notable performance in NeRF-based SLAM applications. However, despite its strengths, these systems often encounter difficulties in dynamic outdoor environments due to their inherent static assumptions. To address these limitations, this paper proposes a novel method designed to improve reconstruction in highly dynamic outdoor scenes. Based on NeRF-LOAM, the proposed approach consists of two primary components. First, we separate the scene into static background and dynamic foreground. By identifying and excluding dynamic elements from the mapping process, this segmentation enables the creation of a dense 3D map that accurately represents the static background only. The second component extends the octree structure to support multi-resolution representation. This extension not only enhances reconstruction quality but also aids in the removal of dynamic objects identified by the first module. Additionally, Fourier feature encoding is applied to the sampled points, capturing high-frequency information and leading to more complete reconstruction results. Evaluations on various datasets demonstrate that our method achieves more competitive results compared to current state-of-the-art approaches.
Related papers
- DGNS: Deformable Gaussian Splatting and Dynamic Neural Surface for Monocular Dynamic 3D Reconstruction [17.2650972298677]
This paper tackles the dual challenges of dynamic novel-view synthesis and 3D reconstruction.
We introduce a hybrid framework: Deformable Gaussian splatting and Dynamic Neural Surfaces.
arXiv Detail & Related papers (2024-12-05T06:28:08Z) - UrbanGS: Semantic-Guided Gaussian Splatting for Urban Scene Reconstruction [86.4386398262018]
UrbanGS uses 2D semantic maps and an existing dynamic Gaussian approach to distinguish static objects from the scene.
For potentially dynamic objects, we aggregate temporal information using learnable time embeddings.
Our approach outperforms state-of-the-art methods in reconstruction quality and efficiency.
arXiv Detail & Related papers (2024-12-04T16:59:49Z) - Event-boosted Deformable 3D Gaussians for Dynamic Scene Reconstruction [50.873820265165975]
We introduce the first approach combining event cameras, which capture high-temporal-resolution, continuous motion data, with deformable 3D-GS for dynamic scene reconstruction.
We propose a GS-Threshold Joint Modeling strategy, creating a mutually reinforcing process that greatly improves both 3D reconstruction and threshold modeling.
We contribute the first event-inclusive 4D benchmark with synthetic and real-world dynamic scenes, on which our method achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-11-25T08:23:38Z) - DENSER: 3D Gaussians Splatting for Scene Reconstruction of Dynamic Urban Environments [0.0]
We propose DENSER, a framework that significantly enhances the representation of dynamic objects.
The proposed approach significantly outperforms state-of-the-art methods by a wide margin.
arXiv Detail & Related papers (2024-09-16T07:11:58Z) - NeuRodin: A Two-stage Framework for High-Fidelity Neural Surface Reconstruction [63.85586195085141]
Signed Distance Function (SDF)-based volume rendering has demonstrated significant capabilities in surface reconstruction.
We introduce NeuRodin, a novel two-stage neural surface reconstruction framework.
NeuRodin achieves high-fidelity surface reconstruction and retains the flexible optimization characteristics of density-based methods.
arXiv Detail & Related papers (2024-08-19T17:36:35Z) - Evaluating Modern Approaches in 3D Scene Reconstruction: NeRF vs Gaussian-Based Methods [4.6836510920448715]
This study explores the capabilities of Neural Radiance Fields (NeRF) and Gaussian-based methods in the context of 3D scene reconstruction.
We assess performance based on tracking accuracy, mapping fidelity, and view synthesis.
Findings reveal that NeRF excels in view synthesis, offering unique capabilities in generating new perspectives from existing data.
arXiv Detail & Related papers (2024-08-08T07:11:57Z) - RoDUS: Robust Decomposition of Static and Dynamic Elements in Urban Scenes [3.1224202646855903]
We present RoDUS, a pipeline for decomposing static and dynamic elements in urban scenes.
Our approach utilizes a robust kernel-based initialization coupled with 4D semantic information to selectively guide the learning process.
Notably, experimental evaluations on KITTI-360 and Pandaset datasets demonstrate the effectiveness of our method in decomposing challenging urban scenes into precise static and dynamic components.
arXiv Detail & Related papers (2024-03-14T14:08:59Z) - PNeRFLoc: Visual Localization with Point-based Neural Radiance Fields [54.8553158441296]
We propose a novel visual localization framework, ie, PNeRFLoc, based on a unified point-based representation.
On the one hand, PNeRFLoc supports the initial pose estimation by matching 2D and 3D feature points.
On the other hand, it also enables pose refinement with novel view synthesis using rendering-based optimization.
arXiv Detail & Related papers (2023-12-17T08:30:00Z) - DNS SLAM: Dense Neural Semantic-Informed SLAM [92.39687553022605]
DNS SLAM is a novel neural RGB-D semantic SLAM approach featuring a hybrid representation.
Our method integrates multi-view geometry constraints with image-based feature extraction to improve appearance details.
Our experimental results achieve state-of-the-art performance on both synthetic data and real-world data tracking.
arXiv Detail & Related papers (2023-11-30T21:34:44Z) - EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via
Self-Supervision [85.17951804790515]
EmerNeRF is a simple yet powerful approach for learning spatial-temporal representations of dynamic driving scenes.
It simultaneously captures scene geometry, appearance, motion, and semantics via self-bootstrapping.
Our method achieves state-of-the-art performance in sensor simulation.
arXiv Detail & Related papers (2023-11-03T17:59:55Z) - ResFields: Residual Neural Fields for Spatiotemporal Signals [61.44420761752655]
ResFields is a novel class of networks specifically designed to effectively represent complex temporal signals.
We conduct comprehensive analysis of the properties of ResFields and propose a matrix factorization technique to reduce the number of trainable parameters.
We demonstrate the practical utility of ResFields by showcasing its effectiveness in capturing dynamic 3D scenes from sparse RGBD cameras.
arXiv Detail & Related papers (2023-09-06T16:59:36Z) - NeuralUDF: Learning Unsigned Distance Fields for Multi-view
Reconstruction of Surfaces with Arbitrary Topologies [87.06532943371575]
We present a novel method, called NeuralUDF, for reconstructing surfaces with arbitrary topologies from 2D images via volume rendering.
In this paper, we propose to represent surfaces as the Unsigned Distance Function (UDF) and develop a new volume rendering scheme to learn the neural UDF representation.
arXiv Detail & Related papers (2022-11-25T15:21:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.