An Infinite-Width Analysis on the Jacobian-Regularised Training of a Neural Network
- URL: http://arxiv.org/abs/2312.03386v2
- Date: Thu, 22 Aug 2024 01:54:59 GMT
- Title: An Infinite-Width Analysis on the Jacobian-Regularised Training of a Neural Network
- Authors: Taeyoung Kim, Hongseok Yang,
- Abstract summary: Recent theoretical analysis of deep neural networks in their infinite-width limits has deepened our understanding of initialisation, feature learning, and training of those networks.
We show that this infinite-width analysis can be extended to the Jacobian of a deep neural network.
We experimentally show the relevance of our theoretical claims to wide finite networks, and empirically analyse the properties of kernel regression solution to obtain an insight into Jacobian regularisation.
- Score: 10.384951432591492
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent theoretical analysis of deep neural networks in their infinite-width limits has deepened our understanding of initialisation, feature learning, and training of those networks, and brought new practical techniques for finding appropriate hyperparameters, learning network weights, and performing inference. In this paper, we broaden this line of research by showing that this infinite-width analysis can be extended to the Jacobian of a deep neural network. We show that a multilayer perceptron (MLP) and its Jacobian at initialisation jointly converge to a Gaussian process (GP) as the widths of the MLP's hidden layers go to infinity and characterise this GP. We also prove that in the infinite-width limit, the evolution of the MLP under the so-called robust training (i.e., training with a regulariser on the Jacobian) is described by a linear first-order ordinary differential equation that is determined by a variant of the Neural Tangent Kernel. We experimentally show the relevance of our theoretical claims to wide finite networks, and empirically analyse the properties of kernel regression solution to obtain an insight into Jacobian regularisation.
Related papers
- Generalization of Scaled Deep ResNets in the Mean-Field Regime [55.77054255101667]
We investigate emphscaled ResNet in the limit of infinitely deep and wide neural networks.
Our results offer new insights into the generalization ability of deep ResNet beyond the lazy training regime.
arXiv Detail & Related papers (2024-03-14T21:48:00Z) - Convergence Analysis for Learning Orthonormal Deep Linear Neural
Networks [27.29463801531576]
We provide convergence analysis for training orthonormal deep linear neural networks.
Our results shed light on how increasing the number of hidden layers can impact the convergence speed.
arXiv Detail & Related papers (2023-11-24T18:46:54Z) - Wide Neural Networks as Gaussian Processes: Lessons from Deep
Equilibrium Models [16.07760622196666]
We study the deep equilibrium model (DEQ), an infinite-depth neural network with shared weight matrices across layers.
Our analysis reveals that as the width of DEQ layers approaches infinity, it converges to a Gaussian process.
Remarkably, this convergence holds even when the limits of depth and width are interchanged.
arXiv Detail & Related papers (2023-10-16T19:00:43Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
We construct an exact power-series representation of the neural network in a finite neighborhood of the initial weights.
We prove that, regardless of width, the training sequence produced by gradient descent can be exactly replicated by regularized sequential learning.
arXiv Detail & Related papers (2023-02-01T03:18:07Z) - On Feature Learning in Neural Networks with Global Convergence
Guarantees [49.870593940818715]
We study the optimization of wide neural networks (NNs) via gradient flow (GF)
We show that when the input dimension is no less than the size of the training set, the training loss converges to zero at a linear rate under GF.
We also show empirically that, unlike in the Neural Tangent Kernel (NTK) regime, our multi-layer model exhibits feature learning and can achieve better generalization performance than its NTK counterpart.
arXiv Detail & Related papers (2022-04-22T15:56:43Z) - Critical Initialization of Wide and Deep Neural Networks through Partial
Jacobians: General Theory and Applications [6.579523168465526]
We introduce emphpartial Jacobians of a network, defined as derivatives of preactivations in layer $l$ with respect to preactivations in layer $l_0leq l$.
We derive recurrence relations for the norms of partial Jacobians and utilize these relations to analyze criticality of deep fully connected neural networks with LayerNorm and/or residual connections.
arXiv Detail & Related papers (2021-11-23T20:31:42Z) - A Convergence Theory Towards Practical Over-parameterized Deep Neural
Networks [56.084798078072396]
We take a step towards closing the gap between theory and practice by significantly improving the known theoretical bounds on both the network width and the convergence time.
We show that convergence to a global minimum is guaranteed for networks with quadratic widths in the sample size and linear in their depth at a time logarithmic in both.
Our analysis and convergence bounds are derived via the construction of a surrogate network with fixed activation patterns that can be transformed at any time to an equivalent ReLU network of a reasonable size.
arXiv Detail & Related papers (2021-01-12T00:40:45Z) - Bayesian Deep Ensembles via the Neural Tangent Kernel [49.569912265882124]
We explore the link between deep ensembles and Gaussian processes (GPs) through the lens of the Neural Tangent Kernel (NTK)
We introduce a simple modification to standard deep ensembles training, through addition of a computationally-tractable, randomised and untrainable function to each ensemble member.
We prove that our Bayesian deep ensembles make more conservative predictions than standard deep ensembles in the infinite width limit.
arXiv Detail & Related papers (2020-07-11T22:10:52Z) - Generalization bound of globally optimal non-convex neural network
training: Transportation map estimation by infinite dimensional Langevin
dynamics [50.83356836818667]
We introduce a new theoretical framework to analyze deep learning optimization with connection to its generalization error.
Existing frameworks such as mean field theory and neural tangent kernel theory for neural network optimization analysis typically require taking limit of infinite width of the network to show its global convergence.
arXiv Detail & Related papers (2020-07-11T18:19:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.